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Abstract— Resources in a queuing network are very rare 

and expensive. Sharing them to the customers of the network is 
a hard problem, and it impacts a lot the performances of the 
system. We present in this paper a new optimal and feasible 
method to share these resources based on the result of the 
game theory, especially the repeated stochastic bargaining 
game. Our model, which we call “myopic model”, is tougher 
even in an instability phenomenon.   
 

Index Terms—Bargaining game, Queue, Repeated game, 
Stochastic game. 
 

I. INTRODUCTION 
A processor sharing queue is a particular queue where the 

word queue is a misnomer. All existing customers ahead the 
servers are immediately served with a part of its available 
resource. These customers are dynamic. Each of them leaves 
the queue to move to another after receiving the service he 
has requested from the server, whence the concept of 
queuing network comes.  
The contribution we provide in this paper is how to share the 
server resources between those customers. Our method is 
based on the game theory, especially a repeated stochastic 
bargaining game. In this way, we propose a model of 
myopic player which optimizes only his current gain.  

II. GAME THEORY ELEMENTS 

A. A bargaining game 
Let’s briefly review our model using a bargaining game. 

It is a non-cooperative game, among strategic game, which 
opposed n players sharing a resource C. Assuming that each 
player i receive a utility ( )i iu c for an allocated resource ic . 

For all i, we suppose that the utility function ( )i iu c  is 
concave, strictly increasing and continuous for 0ic > and 

that the derivative ( )i iu cʹ  is finite. 
A solution to that game is the maximization of the social 
utility on the players set [1]. 

1 1
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n n

i i i i
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When the function ( )i iu c  is concave, the optimal solution 
exists because the bargaining set is a convex set. 

Players bid the resource by proposing payments 
1( , , )np pL  where ip is the payment proposed by player i. 

In [2], we can see that allocation proportional to player’s 
proposal is an optimal solution to such game. In spite of this, 
a problem is found when a player has proposed a very high 
payment. To overcome this inconvenient, we propose a gain 
which is function of the utility and the payment proposal to 
have more equilibrium between players. 

We assume that the system ask an elementary price µ to 
each player. Given the payments 1( , , )np pL  proposed by 
the players, and the allocated resources 1( , , )nc cL , we must 
have for all i : 

i
i

pc
µ

=  (2)  

If the queue server allocated all available resource, it is easy 
to find that the elementary price is given by (3). 

ip
C

µ = ∑  (3)  

By sharing all available resource, and assuming that players 
are identical (the server asks the same price µ to each of 
them), a single elementary price µ  exists for each proposed 
payment 1( , , )np pL [3]. 

In our model, given a price µ , each player has to 
maximize his gain function ig on the possible proposal 

ip set. 

( , ) i
i i i i

pg p u pµ
µ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (4)  

This gain function is defined from the utility compared to 
resource allocated to the player in return for the payment he 
proposed. We will use this function to limit abuses in term 
of higher price proposal for some players. At a higher price 
will decrease this gain. 

The equilibrium can be defined as the price proposal 
* *
1( , , )np pL where players will maximize their gains, and the 

system will grant the elementary price µ defined in (5). 
*

*( , ) ( , ),  0,   1, , ,  = i
i i i i i

p
g p g p p i n

C
µ µ µ≥ ≥ = ∑L  (5)  

In that case, the solution * *
i ic p µ=  is an optimal solution 

satisfying (1). 
To prove it, we can use the lagrangian method to establish 
that the conditions in (5) are identical to the conditions in (1) 
with * *

i ic p µ= . 
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B. A repeated game 
With repeated game we can model situations where 

players interact repetitively playing the same game [4]-[6]. 
They choose their actions simultaneously without knowing 
the choices of other players. So, a basic game is played in 
each period of a discrete time 1,  2,  ...t =  , and at the end of 
each period, the players observe the performed actions.  

We are given a game in normal form 

( ) ( )( ), ,i ii i
J N S g

∈ ∈
=

• •
 where N  is the players set, iS the 

set of possible strategies for player i, and ig his associated 
gain. 
At the step 1t = , each player i chooses an action 1

i is S∈  

independently of other players. Let’s denote  ( )1 1
i i

s s
∈

=
•

the 
vector joint played actions in step 1. At the end of this step, 
1s  is revealed to all players. 
At step t ( 2t ≥ ), knowing the history 

1 2 1( , , , )t th s s s −= L of the played actions during the past, 
each player i chooses an action t

i is S∈  independently of 
other players. Let’s denote tH  the set of possible history at 
step t. 

It remains to define the gain function. For this, we should 
determine how the players evaluate the result of an infinite 
length of history. Indeed, if 1 2( , , )s s H ∞∈L , the player i 
receive a gain ( )tig s at step t. In a model of discounted 
game, the player gives more weight to a unit of gain 
received today compared to a unit of gain received 
tomorrow. For this, we will use a discount factor ] [0,1δ ∈ . 
Thus, one unit of gain owned at step 2 is only δ unit of gain 
in step 1, and one unit of gain owned at step t is 1tδ − unit of 
gain in step 1. 

In this context, the gain owned by player i during a game 
play 1 2( , , )h s s= L  and evaluated at time t = 1 is expressed 
by (6) [6]. 

  1

1
( ) (1 ) ( )t t

i i
t

g h g sδ δ δ
∞

−

=

= − ∑  (6)  

In (6), the factor (1 )δ− is a normalization factor to take the 
gain back to the same unit at any step. 

C. A stochastic game 
Stochastic games are extension of Markov process in case 

of several agents called players in a common environment 
[7]-[9]. These players play a joint action which defines the 
owned gains and the new state of the environment. 
A stochastic game can be defined by a quintuplet   

( ) ( )( ), , , ,i ii i
N E S g T

∈ ∈• •
where: 

-  N is the set of players who act to the game 
-  E is the finite set of states of the game 
- iS is the set of possible strategies (actions) for player i 
- ig is the gain function, which is a function of the state 

of the game and the strategies played by all players : 
1:i Ng E S S× × × →L R  

-  T is the transition model between states, which 
depends to joint strategies : 

[ ]1: 0,1NT E S S E× × × × →L  

At each step of the game, given the current state e E∈ , 
players choose strategies 1( , , )Ns s s= L to play. Each player 
i own a gain ( , )ig e s , and then, the system goes from state e  
to state eʹ according to the transition model T who satisfies 
(7). 

  ( , , ) 1
e E
T e s e

∈́

ʹ =∑  (7)  

We call a policy [ ]Card : 0,1 Si
i Eπ → the vector whose 

elements define a probability distribution over the strategies 
of player i, specific to a game in normal form defined by the 
state e. for player i, the policy defines a local strategy in 
each state within the meaning of game theory. The expected 
utility refers to the expected gain on the strategies of 
opposing players. For a joint policy 1( , , )Nπ π π= L , we 
define the expected utility of player i for each state e as 
expressed in (8).  

  [ ]( , ) ( , )i s S iu e g e sπ ∈= E  (8)  

where 1 NS S S= × ×L , and E denotes the expectation 
function. 

And therefore, we can also define the utility ( , )iU eπ of 
states for player i, associated to a joint policy π , as the 
expected utility for player i from the state e if all players 
follow this joint policy. 

1 0

1
( , ) ( , ) |

( , ) ( , , ). ( , ). ( , )

t
i s S i

t

i i
s S e E

U e u e e e

u e T e s e e s U e

π δ π

π δ π π

∞
−

∈
=

ʹ∈ ∈

⎡ ⎤= =⎢ ⎥⎣ ⎦
ʹ ʹ= +

∑

∑∑

E
 (9)  

where ( , )e sπ designates the probability of the joint 
strategies s on the state e according to the joint policy π , 
and δ is the discount factor. 

In a stochastic game, a Nash equilibrium is a vector 
strategy * * *

1( , , )Nπ π π= L  as for all state e E∈ and for all 
player i [9] : 

( ) ( )* * *( , ), ( , ), ,   i i i i i i i iU e U eπ π π π π− −≥ ∀ ∈Π  (10)  

where iΠ  is the set of policies offered to player i. The 
notation * *( , )i iπ π−

means the vector of policies *π where 
*
iπ is the policy of player i and *

iπ −
the joint policy ( )*j j i

π
≠

of 

players other than i. 

III. MODEL OF CUSTOMERS AND QUEUING 
NETWORK 

A. Principle 
On a given queue, customers arrive and others leave. Each 

customer needs a total of resource ib to fulfill his 
requirement that he asked to the server. In the following, we 
put that these resources are sampled and shareable in order 
to work in the discrete domain. At the beginning of each 
time interval t , each player i sends his strategy t

is for the 
bargaining of the resource C of the server. We restrict to a 
finite countable strategies set .iS The server will evaluate 
these proposals to compute the resources t

ic that he will 
assign to the players. Each resource t

ic has a price t
ip  that 
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the server sends with the resource to the player. Once 
received, each resource will be used by each player and they 
will calculate their gains. They also assess the remains of 
their respective requirement function of the consumed 
resources. We precise that the player requirement at the 
beginning of time t  was assessed at the end of time 
1−t after using the resource 1−t

ic allocated at this time. 
As we consider the mobility of the players, each of them 

will decide from his requirement whether he will stay in his 
current queue, or move to the next queue. Initially, when the 
customer i arrives in a queue, the first requirement is noted 
.0ib  Over time, depending on the allocated resources, that 

requirement becomes  t
ib as : 

11 −− −= t
i

t
i

t
i cbb  (11)  

The decision of the customer is determined by (12). 

⎩
⎨
⎧

≤
=

 0 if    
0> if     

)(
t
i

t
it

i bmove
bstay

bdec  (12)  

This principle is illustrated on Fig. 1. 

 
Fig. 1. Games at time t 

B. The game formulation 
Let’s model these actions and movements by a stochastic 

game. This is a stochastic game between tN players. The 
number of players tN varies over time as players arrive to or 
depart from the queue according to their requirements. 

At time t , for player i , the local state of the game is 
defined by the requirement .tib By its finite cardinal, let’s 
note iB the set of possible requirements of player i . For 

player i , let’s put t
is the strategy that he proposes to the 

server. The set of possible proposals, noted { }, t
ii sS =  is also 

the set of possible strategies for that player. This strategy is 
developed on the next paragraph. 

Let 1:  t
i i tN
g B S S× × × →L R be a function gain for the 

player, function of the local state t
ib and the joint strategies 

).,,( 1
t

N

tt
tsss !=  We evaluate this gain from the allocated 

resources, which are themselves based on price proposals 
ts done by all players. 
The transition model between local states is defined by 

the function 0,1] : 1 [→×××× iNi
t
i BSSBT t!  as expressed 

by (13) : 

∑
∈+

+ =
iB

t
ib

t
i

tt
ii bsbT

1

1 1),,(  (13)  

Since the requirements (local states) 1+t
ib and t

ib are 

dependent, and are also function of the joint strategy ,ts we 
can say that this function can be well defined. We will 
further evaluate this transition function. From these data, it 
is possible to model the actions and movements of the 
players with a stochastic game defined by the quintuplet 

)).(),(),(),(,( iiii
t TgSBN  

C. Bargaining of the resource of the server 
Given a resource C of the server, it will be bargained 

through the customers of the queue, here called as players. 
At time ,t each player must maximize his gain on the 
possible proposals set iP as shown on (14) obtained from (4) 

t
it

t
i

i
tt

i
t
i ppupg −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

µ
µ ),(  (14)  

On (14), the function ( )tii cu is the utility function of 

player i regarding the resource t
ic that the server has 

allocated after the bargaining computation. This function 
must be a concave function as described on paragraph II. 
And to better assess the allocated resource, it is necessary 
that this utility function iu is also function of the 

requirement .tib  We can use, for example, a logarithmic or 
quadratic valuation given in (15) and (16). 

( )
)log(
)log(,
t
i

t
it

i
t
ii b

cAbcu =  (15)  

( )
2

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

t
i

t
it

i
t
ii b

cBAbcu  (16)  

where A and B are arbitrary positive constants. The proof of 
the concavity of these functions comes from the negativity 
of their second derivatives. 

Players send to server their proposals 

1( , , ) .
tt t t N

tN
p p p= ∈L R  Once received by the server, it 

computes the resource to allocate  ).,,( 1
t
tN

tt ccc !=  

On (14), the price tµ is not yet known beforehand, so the 

players are not able to compute the optimal proposal .tip  
We suppose that price anticipation described by (3) is used. 
The function gain that he must maximize is defined by (17) 
assuming that ∑ ≠ij

t
jp is constant. 



 
Repeated stochastic bargaining game to share queuing network resources 

                                                                                                                                                       www.erpublication.org 52 

( )
t

t t ti
i i i it

jj

p
g p u C p

p

⎛ ⎞
= −⎜ ⎟

⎜ ⎟
⎝ ⎠∑

 (17)  

By cancelling the derivative with respect to t
ip  : 

( ) . 1 . 1 0
t t

t i i
i i t t

j jj j

p p
g u C C

p p

⎛ ⎞ ⎛ ⎞ʹ ʹ= − − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑ ∑

 (18)  

Let’s note 
t

t i
i t

jj

p
d C

p
=
∑

. So, we have : 

( ) 1. 1
t

t i
i i

du d
C C

⎛ ⎞ʹ − =⎜ ⎟
⎝ ⎠

 (19)  

Let’s call t
id the strategy of player i, that he sends to 

server at time t. This strategy will be assessed from (19) 
independently of the other players. So, once the joint 
strategy  1( , , )t t t

tN
s d d= L is received by the server, it 

computes the bargaining. As 
t

t i
i t

pd
µ

= , the price t
ip  to 

perform this computation can be derived (by the server) 
from the strategy t

id sent by the player i with some factor 
tµ (the elementary price of resource) that he enforces. 

D. Study of the stochastic game of the player i 

1) Model of the state transition 
As we suggested that the player i plays a stochastic game 

defined by a quintuplet )).(),(),(),(,( iiii
t TgSBN  To model 

the dynamism of player i at time t, we defined his local state 
as his requirement t

ib . The state change process is very clear 
after using the resource t

ic  allocated by the server. The 
transition from the state t

ib  to another state 1t
ib
+ means that 

the allocated resource at time t is equal to 1t t
i ib b+ −  : 

1  t t t
i i ib b c+ = −  (20)  

The probability of transition from the state t
ib  to another 

state 1t
ib
+  can be assessed as the probability that the allocated 

resource at time t is 1 t t t
i i ic b b += − . The model 

0,1] : 1 [→×××× iNi
t
i BSSBT t!  of the state transition is 

expressed by (21). 

1

1
1   if   

( , , )
0  otherwise                    

t
t t i
i i tt t t

jji i i

db b C
dT b s b

+

+

⎧
− =⎪

= ⎨
⎪
⎩

∑  (21)  

where the joint strategy of all player is 1( , , )t t t
tN

s d d= L , 

and 
t
i

t
jj

d
C

d∑
means the allocated resource to player i at time 

t. 
The gain owned by that player at this time is expressed by 

(22). 

( ) ( )t t t t t
i i i i ig d u d dµ= −  (22)  

2) Impact of the game history and its future 
As we are faced to a repeated game, players can use the 

history of the game to bargain the resource of the server. Let 
{ }1 1 1 1 1 1, , , , , , ,t t t t t th b d b d b Hµ µ− − −= ∈L  where tb indicates 

the requirements at time t, td  the proposals sent to the 
server at this time, tµ the elementary price enforced by the 
server, and tH  the set of possible history for this game. The 
game history that the player i can observe is called 
observation of the player i that we denote t

io . This 
observation is limited because the player i is not able to 
observe some part of the history of his requirements, his 
proposals, and the elementary price sent by the server due to 
lack of memory. So, we have t t

io h⊂ . It is also required that 
player can observe his current state t

ib : t t
i ib o∈ . Let’s denote 

t
iO  the set of possible observations up the time t for player i. 
Considering these observations, the player i can adjust his 

way of calculating his proposal at time t. Let’s call it as 
policy of player i at time t, denoted t

iπ . It differs from a 
simple strategy t

id  by using the observations up the time t. 

:
      ( )

t t
i i i

t t t
i i i i

O A
o a o

π

π

→

=a
 (23)  

In (23), iA  indicates the set of possible proposals. 
Equation (23) mentions that policies t

iπ  are function of 
observation of player i at time t. So, the player i have to 
determine a policy which can ensure a best response. The 
better is to find a time independent policy that we call a 
stationary policy iπ ,  so as to be usable at any time by 
simply basing to observations. We can get this policy 
because the current requirement t

ib depends only on the 
previous requirement 1t

ib
−  and the allocated resource at this 

time that is function of the proposal 1t
id
−  as given by (21). In 

that case, the policy is markovian. 
Let denote ( ),i iπ π π−=  the joint stationary policy. The 

gain ( , )k k k
i i ig b d  owned by the player i at step k is discounted 

by a factor k tδ −  at time t, and the total gain owned by this 
player at time t with the joint stationary policy π  is denoted 
as ( , )t t

i iG b π . This gain is expressed by the recurrent relation 
(24). 

1 1 1

1
( , ) ( , ) ( | ). ( , )t t t t t t t t t

i i i i i i i i i
tb Bi i

G b g b d T b b G bπ δ π+ + +

+ ∈

= + ∑  (24)  

The policy *
iπ which ensures the best response for player i is 

given by (25). 

( )( )* ( ) Argmax , ,t t
i i i i ï ï

i

G b
π

π π π π− −=  (25)  

The problem is how the player i can find this optimal policy 
*
iπ .  
Equation (25) shows that the policy of player i ensuring 

the best response depends on other players policies, that is a 
function of other players states. Player i doesn’t know other 
players states, so he doesn’t able to compute his optimal 
policy. However, he can optimize only his immediate gain 
( , )t t t
i i ig b d . The expected gain is therefore discounted by a 
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factor 0δ = . In that case, the proposal strategy t
id coincides 

with the optimal policy *
iπ . Let’s call myopic policy this 

policy which doesn’t consider, or ignore, the impact of the 
future. The optimal policy is denoted m

iπ , which is a time 
independent function of a single variable, and depends only 
on the current state of player i. 

3) Performances of the model 
We can use two different measures to evaluate the 

performance of our model: the total gain (with discount) that 
each player must maximize, and the sojourn time that each 
player must minimize. The total gain owned at time t is 
given by (26). 

( , ) ( , )t t m t t t
i i i i iG b g b dπ =  (26)  

where the proposal t
id and the function ( )m t

ibπ coincide. 
If the player i arrives to the queue at time i

it , the gain 
owned at a time t ( i

it t≥ ) is discounted by a factor 
it tiδ − during the calculation of the total gain. The player i will 

move from this queue at time f
it as (27). 

{ }min 0,f t
i it

i
it b t t>= ≤  (27)  

The sojourn time for player i is expected by (28). 
S f i
i i it t t= −  (28)  

The total gain for player i is expected by (29). 

( )

( , )

( , )

( )

fti
t tT t t mi

i i i
it ti

fti
t t t t mi

i i
it ti

fti
t t m t mi

i
it ti

G G b

g b

u

δ π

δ π

δ π µ π

−

=

−

=

−

=

=

=

= −

∑

∑

∑

 (29)  

We can also use the expected total gain to penalize the 
player in term of time, by making him able to own more 
gain if he doesn’t stay longer on the queue. The expected 
total gain is expressed by (40). 

( )( )

T
T i
i f i

i i

fti
t t m t mi

i
it ti

f i
i i

GG
t t

u

t t

δ π µ π−

=

=
−

−

=
−

∑
 (30)  

IV. SIMULATION EVALUATION AND ANALYSIS 
To evaluate our model, we tried to implement our model 

on queuing networks who convey packets simulated on 
OPNET Modeler software [10]. We compared the 
established model to other models to know his performance. 

As described in Fig. 2, simulations consist of: 
-  FIFO (First in First Out)  queue, 
-  Classic PS (Processor Sharing) queue, 
-  Processor sharing queue using the KSBS 
(Kalai-Smorodinsky Bargaining Solution) [11], 

-  Our myopic players model. 

 
Fig. 2. Simulation description 

“Source” sends same packets to “Dest MYOP”, “Dest 
KSBS”, “Dest FIFO” and “Dest PS” through the queues. 
The links between these entities feel no packet propagation 
delay or propagation error. 
Simulations are based on the following parameters: 

-  The inter-arrival of packets T  (time between 
successive generations of packet at “Source”) has an 
exponential distribution parameter λ = 1 second 

-  The µ packet sizes generated by “Source” as an 
exponential distribution with parameter 1024 bits. 

-  The processing capacity C of the server of each queue 
is fixed. This capacity, expressed in bits per second 
(bps), is identical for all four queues of the system. 

A.  Stable system 
Let’s consider a stable system, where the capacity of 

server is greater than the load rate of the queue. We used 
1100 bpsC = for the simulation. 

During 10 minutes of simulation, we get the results below. 

 
Fig. 3. Evolution of the average number of packets on each 

queue on a stable system 
 
We find on Fig. 3 similar properties of the PS queue and 

our MYOPIC  queue. FIFO queue and the egalitarian 
solution have more packets queuing compared to PS and 
MYOPIC.   
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Fig. 4. Evolution of the average sojourn time on each queue on a 

stable system 

   As in Fig. 4, the average sojourn time is almost identical 
for PS queue and MYOPIC queue. There is a stable 
difference around 0.7 second between them, where the 
sojourn time for PS queue is greater than the one for 
MYOPIC queue. 

 
Fig. 5. Evolution of the throughput from each queue on a stable 

system 

In Fig. 5, the system provides identical throughput. The 
number of packets per second which come out of each 
queue is almost the same after a long time of simulation. 

B. Unstable system 
Now, let’s consider an unstable system, where the capacity 

of the server is lower than the load rate of the queue. For 
that, we used C = 900 bps. 

 In Fig. 6, at the 10th minute, we already find that the 
system is unstable; the number of packets on each queue is 
increasing but the lowest is shown by the MYOPIC queue. 
Contrary to a stable system, the difference between PS 
queue and MYOPIC queue performance is highlighted, the 
two curves diverge. 

Till the 10th minute, we can read on Fig. 6 that in average: 
-  33.45 packets are found processed on the MYOPIC queue, 
-  35.12 packets are found processed on the PS queue, 
-  36.71 packets are found queuing on the FIFO queue, 
-  41.64 packets are found queuing on the KSBS queue. 

In term of average sojourn time, sojourn on a MYOPIC 
queue is lowest compared to the other scheduling method. 
We can interpret it as a low latency in practice. 
 

 
Fig. 6. Evolution of the average number of packets on each queue 

on an unstable system 

 
Fig. 7. Evolution of the average sojourn time on each queue on an 

unstable system 

 
Fig. 8. Evolution of the average throughput from each queue on an 

unstable system 

Table I shows the number of packets received by each 
destination after the 10 minutes of simulation. It puts 
evidence the difference of the average throughput as in Fig. 
8. 

Table. I. Number of packets at each destination at the end 

Node Name [Total] 
Dest FIFO 495 
Dest KSBS 488 
Dest MYOPIC 501 
Dest PS 496 
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Source 607 
Let’s precise that the Source sends the same number of 

packets at the same time with a same distribution, but this 
big difference is due to the scheduling and processing on 
each queue. 
We can say that our MYOPIC system can better manage the 
packets in case of instability compared to the classic PS 
queue (e.g: in case of temporary congestion). 

V. CONCLUSION 
Our contribution consists of a new way to manage the 

resource of queue. Our methodology is based on a repeated 
stochastic bargaining game to share the resources of a 
queuing network. We introduced a new principle of a 
myopic player who doesn’t optimize his future gain by the 
history of the game. The simulation shows the performance 
of our model which has a better scheduling during an 
instability period.  
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