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 

Abstract— This paper presents a motor-pump assembly’s 

energy balance in the presence of a frequency inverter to predict 

potable water power functioning at variable speed. In order to 

carry out the system’s energy balance, we consider the operating 

characteristics of the pump unit, the physical and geometrical 

characteristics of the hydraulic network, and the monthly 

consumption of drinking water of the households or consumers 

benefiting from this network. The mathematical tools used in 

this simulation were the combinations of the Monte Carlo 

method and the neural networks. We used the neural networks 

to predict the motor-pump assembly’s behavior through the 

interpolation of the Hill Diagram and for the recognition of the 

Moody diagram used in determining the system's loss of load. 

Finally, the flexibility of the neural networks reduces the 

necessary empirical data collection. Moreover, to perform the 

simulation in other hydraulic systems besides in this work, it is 

recommended to transpose the result. 

 
Index Terms— Monte Carlo Method, Artificial Neural 

Networks, Fluid Mechanics, Hill Diagram, Moody Diagram, 

Energy Conservation, Flow Generators 

I. INTRODUCTION 

This article bestowed the energy balance of a motor-pump 

set in the presence of a frequency inverter to predict the power 

of the hydraulic pump operating at variable rotation. 

Furthermore, regarding the motor-pump set’s operating 

characteristics, the physical and geometric characteristics of 

the hydraulic network, and the monthly consumption of 

drinking water in the homes benefited by this network, bring 

out the system’s energy balance. The mathematical tools used 

in this simulation were the combinations of the Monte Carlo 

method with artificial neural networks. Next, predicting the 

motor-pump behavior by neural networks is set through the 

interpolation of the hill diagram and for the recognition of the 

Moody diagram used to determine the head loss of the system. 

The technical terminologies, the description of the operation 

of hydraulic installations, and the load loss calculation can be 

found in [1]-[3]. During the hydraulic systems simulation 

process, besides this study, and to reduce the necessary 

empirical data collection, the transposition of the results 

should consider the flexibility of the neural networks. 

Figure 1 illustrates the basic operating principles of the 

simulator developed here. As can be seen, a graphic editor 

allows the isometric entry of the hydraulic network. A neural 

network with feedforward architecture (e.g., [4]-[7]) predicts 
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the behavior of the motor-pump set (15CV) through the 

interpolation of the hill diagram. Hydrometric measurements 

performed in the field allowed the computer to store the 

statistical behavior of drinking water consumers of the 

hydraulic installation studied here. In this way, the machine 

will be able to apply the Monte Carlo method (see [8], [9], 

[10], [11]) to perform the energy balance of the system with 

the pump working, both at variable rotation as for constant 

rotation. The method of transposition of results will allow 

predicting the behavior of water consumption of any other 

hydraulic installation without the need for new hydrometric 

measurements. 

Thus, we divided this work as follows: after the start with 

off brief study case explanation section II will carry out a 

bibliographic review of the existing literature, then, section III 

will carry out the theoretical development of the Monte Carlo 

method used in this simulation. Next, section IV develops the 

methodology for translating the results to simulate new 

hydraulic installations without the need for new hydrometric 

measurements. Section V presents a brief theoretical 

summary of artificial neural networks and how they work. 

Section VI describes qualitatively, from a physical point of 

view, the most relevant characteristics of the hill diagram of 

centrifugal pumps in general. 

 
Fig. 1 Simplified scheme of the simulator developed in this 

work. 

Section VII briefly describes the graphic and algebraic 

principles used to determine the head losses of consumers in 

the hydraulic network. Section VIII explains a complete 

computational algorithm how was mentioned in the previous 

sections, involving everything that has already discussed. 

Lastly, section IX presents a practical result of this simulation 

carried out in Bairro Vista Verde, located in the city of 

Itajubá/Brazil. Still, in section IX, a simulation with a 

constant rotation of the centrifugal pump is compared with a 

simulation with rotation variation. In the end, the conclusions 
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and final comments on this work are in section X. It is 

important to note that we use MATLAB® to produce the 

simulation. 

II. LITERATURE REVIEW   

The design of industrial pipelines and the calculation of 

load loss can be found in [1]-[3]. An Introduction to the 

design of flow machines in [1] reproduces a concise 

theoretical text. However, this bibliographic review will focus 

more precisely on the subjects and works of the Monte Carlo 

method and artificial neural networks. With this purpose in 

mind, below, some articles and books describing the Monte 

Carlo methods will be described, followed by some articles 

and books on the artificial neural networks’ theoretical 

development. 

Several books and articles are describing the Monte Carlo 

method mathematically (e.g., [8]-[14]). However, minimal 

knowledge of statistics is necessary to understand this method 

better. A classic statistical book in the area is due to Papoulis 

(1965) in [12]. Simultaneously, [13] and [14] characterize 

two modern and recent applications using the Monte Carlo 

method combined with the theory of artificial neural 

networks. In [13], the Monte Carlo method is used to 

previously estimate the mean quadratic training error of a 

feedforward neural network designed with unbalanced 

training patterns. In [14], the Monte Carlo method is used 

together with an MLP neural network to calculate the area of 

forest reserves from drone photos. 

The Monte Carlo method is a way of solving problems 

using random numbers. Computer simulation models widely 

use this method. 

In this context, simulation is a technique that emulates the 

operation of a real-world system as that system evolves 

time-tested. An adequate way to simulate the behavior of the 

type of variables to be analyzed is to develop a simulation 

model using discrete-event probability distributions known as 

the Monte Carlo method. 

As described in [8], forego the complex analytical 

mathematical models modeled the interactions between 

nuclear particles in favor of modeling only the rules and 

statistics that govern each stage of the process. Starting from a 

uniform statistical distribution and then mapping it to 

distributions of interest to the given problem, it was possible 

to process multiple decision chains (simulations) and then 

extract relevant results with precision compatible with 

analytical methods. 

On the other hand, Artificial intelligence has allowed 

significant advances in the area of computing. One of the most 

successful approaches is artificial neural networks, which 

would enable, for example, the recognition of writing, image 

processing, modeling of nonlinear dynamic systems, 

applications in control theory, etc. An excellent introduction 

to the theory of artificial neural networks can be found in [4], 

[15], [16]. An essential starting point in the study of artificial 

neural networks is that they consider being universal 

approximators of functions (e.g., [17]-[21]). 

Thus, artificial neural networks (ANN) have been widely 

used even in the modeling of nonlinear dynamic systems in 

recent decades, as they have a high capacity to approximate 

nonlinear mappings. Several studies have been developed in 

this area using the NARMAX methodology (Non-linear 

Auto-Regressive Moving Average with exogenous input) and 

subsequent application in control (e.g., [22]-[29]). 

The historical work that limited the application of artificial 

neural networks in the late sixties of the twentieth century is 

due to Minsky (1969) in [30]. Another important old work, 

but on machine learning, is due to Nilsson (1965) in [31]. 

Primarily, [5] creates the original work on training a neural 

network with MLP architecture using the backpropagation 

algorithm. Besides, [32] complements the first mathematical 

concepts about the backpropagation. Succeeding, [33] 

proposes an article on the historical description of this 

algorithm.  

The training algorithm of a neural network with MLP 

(Multi-Layer Perceptron) architecture known as Marquardt's 

algorithm and which we use a lot, in all the simulations 

presented at the end of this article, is due to Hagan (1994) in 

[6]. Many other algorithms attempt to speed up MLP 

networks’ training, for example, the algorithm described in 

[34]. After that, the researchers experienced that the theory of 

neural networks has evolved a lot in the last three decades in 

an extraordinary way. 

The attentive reader must have already realized that the 

bibliographic references listed at the end of this article are 

already relatively old (almost all of them are from the nineties 

of the twentieth century). The reason for this is that this article 

is a summary of the Master Thesis of Professor Paulo Marcelo 

Tasinaffo, carried out in 1998 in Brazil (see [35]). Its advisor 

was Professor Afonso Henriques Moreira Santos (first author 

of this article).  

Therefore, this article went unpublished for more than 20 

years. In this way, we prefer, as far as possible, to leave the 

original references for the preparation of this thesis. We just 

added recent contributions from articles that combine the 

Monte Carlo method with artificial neural networks. Another 

important observation is that the software developed still 

needs to undergo a restoration process since it was established 

in the late nineties using Windows 95. For example, the 

Moody diagram interpolated by neural networks (see section 

IX and Figure 7) could be significantly improved nowadays. 

To conclude this section, it should note that both Monte 

Carlo Methods and the theory of artificial neural networks are 

very vast fields of science and mathematics. The ability to 

combine these two branches of mathematics (e.g., [13]-[14]) 

can be seen in some recent modern articles. This capacity 

makes the technological application of artificial neural 

networks increasingly broad in solving current engineering 

problems. 

III. THE MONTE CARLO METHOD 

A forced hydraulic system of drinking water supply with n 

consumers develops a random and non-deterministic manner 

water consumption. Statistical systems simulation methods 

can adjust adequately to the problem described and, therefore, 

choosing to be applied in this work. 

The Monte Carlo method is characterized by a high number 

of computer simulations to obtain statistical results. For this to 

be possible,  remain a set of temporal samples of the elements 

involved in the simulation must initially. Thus, for a set of n 
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elements with m temporal samples in each element, the initial 

Table 1 of data can be formed. The elements in Table 1 form a 

data matrix of n consumers of a drinking water supply 

network, with the respective drinking water consumption 

being accounted for or measured monthly for m consecutive 

months.  

However, there is a possibility to measure the consumption 

of drinking water by consumers, using a period shorter than 

one month. For example, measurements could be performed 

two or even four times a day to obtain a more reliable 

statistical result, at least for the first hydraulic installation 

studied. The other hydraulic fittings, which come after the 

first installation studied exhaustively, could use the 

transposition of the results of the first one to make the 

measurements easier. These results will be made more evident 

in section IV. Thus, with the samples in Table 1, the vector of 

the means (Q) of the n elements and the variance-covariance 

matrix (Q) of the samples must be obtained. These 

expressions are given respectively by: 
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where, i = 1, 2,..., n  e  j = 1, 2, ..., n. 

For the particular case of this work, Qmn represents the nth 

consumer’s water flux at the mth instant. The water fluxes of 

consumers can be determined indirectly from the water meters 

installed in all homes in the neighborhood studied. 

 

Table 1. Set of temporal samples of the elements to be 

involved in the simulation. 
 Element 1 Element 2 ... Element n 

Instant 1 Q11 Q12 ... Q1n 

Instant 2   ...  

. . . ... . 

. . . ... . 

. . . ... . 

Instant m Qm1 Qm2 ... Qmn 

 

Thus, in possession of  (Q) and (Q), the behavior for each 

element, as well as the entire hydraulic system, can be 

predicted by the Monte Carlo method. For the variances and 

covariance to be respected, a procedure as described below is 

necessary. 

Let W be the vector of the random variables representing 

the behavior of the n elements of the set at a given instant, 

however, for the particular case in which Q=w and w=0  

(null vector), that is, variables centered on zero. It is possible 

to write the expression (2), where Z is a vector of n normal, 

standardized and independent random variables, and Y a 

matrix whose elements (yij) must be calculated for the identity 

(2) to be valid. 

                                   W = Y . Z ,                                     (2)                                                                                 

Hence, it can be proved that the variance-covariance matrix 

of W (w) is given by property (3), where Z is the 

variance-covariance matrix of Z. 

                                   w = Y . z . Y
’
,                                (3) 

The variable Y’ denotes the transposed matrix of Y. Matrix 

Z is the identity matrix of order n x n since it belongs to a 

sample of independent standardized n normals. Like this, 

                                  w = Y . Y
’
= x ,                                 (4) 

It is now possible, through expression (4), to calculate the 

elements of Y. However, there are infinite solutions. To 

facilitate the calculation, Y is assumed to be triangular, and 

thus, Y is determined by the Forward Substitution method. 

With the Y matrix, we return to expression (2). Values are 

drawn for the n variables y (independent normals), and the n 

variables z are calculated. Adding the respective mean values 

of the vector Q we have a set of simulated data for individual 

consumption: 

                                   Q= W + Q ,                                     (5) 

 By carrying out a large number of drawings, that is, 

obtaining several Q vectors, it is possible to study the 

system’s typical behavior in its aspects of interest. The Monte 

Carlo method can then be defined as the successful realization 

of several drawings to obtain several Q vectors that must obey 

equality (5). 

IV. TRANSPOSITION OF RESULTS 

A first data collection was carried out for a specific 

hydraulic system for drinking water supply. From these 

results and the use of statistics, it is possible to predict a 

probability density function (pdf) that best characterizes the 

system. This technique (pdf) generalize the behavior of 

hydraulic systems, to a certain extent, similar to the first. In 

this way, the prediction of consumers’ behavior from other 

installations can be obtained without the need for new data 

collections. 

However, it should be kept in mind that the more extensive 

and more diverse the samples are, the more accurate the (pdf) 

obtained will be. Therefore more reliable results can be 

acquired for the other hydraulic installations. Considering 

now the methodology of transposing the results, correctly 

said. The previous knowledge of the mean vector (µQ) and the 

variance-covariance matrix (ΣµQ) of the initial installation 

already studied, represented by equations (1.a) and (1.b), are 

crucial. Then, based on these values, the unit matrix of the 

system is calculated, as illustrated in equation (6).  

It is important to note that this equation (6) is a 

generalization of the initial hydraulic installation’s statistical 

behavior and studied exhaustively. In this way, it can be used 
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as a good approximation for other hydraulic installations. The 

only necessary information to be known should be the 

monthly consumption of drinking water. A preliminary study 

indicates that these statistical distributions are not very 

different from traditional Gaussian distributions. 

The mean water fluxes that appear in equation (6) refer to 

the monthly consumption of drinking water. Thus, consumers 

of the initial hydraulic installation must be thoroughly studied 

to obtain an adequate and accurate data matrix in (6). 
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Where,
 Q



  is the unit variance-covariance matrix of the 

system. 

In this way, the elements of the matrix can be divided into 

two categories of elements: the first being the set of elements 

on the main diagonal and the second being the set of elements 

or below or above the main diagonal. Thus, the following 

auxiliary vectors are obtained. 

  

i

_
Qi

_
Q

ii
ii  to  ,n n  ,. . . ,22 ,11

2
















 


 


,       (7.a) 

j

_
Qi

_
Q

ij
ij  to  ,1-n n ., . . ,1n   ,. . . ,31 ,21j i
















 


 


,   (7.b) 

The vectors (7.a) and (7.b) must have a distribution of 

probabilities 
ii

^
   and

ij

^
 , respectively. An example of a 

probability distribution to illustrate the model is presented in 

Figure 2. To obtain the probability distributions 
ii

^
  and 

ij

^
 , 

the histogram of the vectors (7.a) and (7.b) must first be 

obtained and determined. 

Since the vectors presented in the last two equations 

represent the system’s best probability distributions, they can 

be used to generate the flux of drinking water typical of the n 

consumers of any hydraulic installation. However, these 

vectors are by no means self-sufficient, and some minimal and 

necessary information about the new system must still be 

known. For this particular case, knowledge of the vector of 

mean monthly fluxes of drinking water from consumers (µQ
2
) 

and the physical and geometric configuration (isometric) of 

the new hydraulic installation will also be crucial. 

With this information, it is possible to draw a new unit 

variance-covariance matrix and determine the 

variance-covariance matrix of the new system and, as 

indicated in equation (8). In equation (8), the mean drinking 

water consumption values of the new hydraulic installation 

where the results are to be transposed are used. 
 

 
Fig. 2 A graphical example of a particular type of 

probability distribution and the histogram that generated it. 
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Where, ΣµQ
2
 is the variance-covariance matrix of the new 

hydraulic installation; Q
_

i
is the i-th element of the mean 

vector (µQ
2
)  of the monthly fluxes of the m consumers of the 

new hydraulic network and 


i j
 are the elements generated 

randomly from the unit distribution found for the original 

system. 

It should be noted that these last elements, generated 

randomly, are not the unit values found for the first model, but 

random values drawn from these. With the vector (µQ
2
), the 

variance-covariance matrix (ΣµQ
2
), and the physical and 

geometric configuration of the new hydraulic system, then it 

will be possible to apply the Monte Carlo method, as 

explained in section III of this work. Thus, it will be possible 

to consolidate and simulate the new hydraulic system’s 

behavior, just as it was done for the original hydraulic system. 

 

V. ARTIFICIAL NEURAL NETWORKS AS UNIVERSAL 

APROXIMATORS OF NONLINEAR FUNCTIONS 

Artificial neural networks can be defined as an 

interconnection of neurons, such that the outputs of a neuron 

are connected via weights, to all other neurons in the network, 

including itself (see [4] and [15]). This is the best definition of 

neural networks in terms of computation. It can be proved that 

artificial neural networks with feedforward architecture can 

function, from the mathematical point of view, as universal 

approximators of functions. 

Train a neural network is nothing more than solving an 

optimization problem [4]. This problem can be seen as a 

nonlinear least squares problem. The backpropagation rule is 

used to determine the Jacobian of the network and, thus, it can 

be applied to conventional methods of numerical 

optimization, such as, for example, the gradient method. 

Since the backpropagation training algorithm (see [5]) was 

popularized, much research has been done to accelerate the 

convergence of its application to real problems. The 

Marquardt algorithm (see [6]) has a faster convergence than 

conventional backpropagation, when the number of weights 
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in the network is less than a few hundred. Thus, it was decided 

to use this last algorithm in the elaboration of the trainings 

used in this article. 

Artificial neural networks were used here for the 

interpolations of the hill diagram of the centrifugal pump 

tested in the laboratory (see Figures 3 and 6) and of the 

Moody diagram (Figure 7) that determines the friction factor 

of pipes in the calculation of pressure loss. 

 

VI. HILL DIAGRAM OF CENTRIFUGAL PUMPS 

To analyze the system where there is variation in the 

rotation of the motor-pump set, one should first understand 

the hill diagram that relates the physical quantities Qb (pump 

flux), nb (pump rotation), Hb (total pump height) and b 

(pump performance). Figure 3 illustrates how the general 

diagram of such equipment is composed. 

As can be seen, the lines (n1, n2, n3, n4) represent the 

various rotations admitted by the system. The increase in 

rotation will always occur from left to right, that is, n1 <n2 

<n3 <n4 for any pump. 

The constant hydraulic performance curves are represented 

by the closed elliptical curves in the diagram. Hydraulic 

performance has always increased from outside to inside the 

diagram, that is, there is always 1 > 2 > 3 > 4. 

The curves (1, 2, 3) represent the system for a given 

configuration and state of a hydraulic network. State, in this 

case, is understood to mean mainly the position of consumers' 

valves (water tank buoys, etc.). For the case where the system 

works with these valves fully open, the system curve is 

represented by the curve 1, and when these valves are closed, 

the curve tends to be more pronounced and will, for example, 

be represented by 2. That is, the curve of the system will 

depend on the geometry and configuration of the piping of its 

hydraulic elements (elbows, valves, etc.) and on the current 

status of each hydraulic element (closed, partially open or 

fully open). 

In this way, if the pump is activated to work with a rotation 

n2, imposed by the electric motor, and 1 being the typical 

operating curve of the system, then the operating point of the 

motor-pump set will be given by the equilibrium point of 

these two curves, which can be mathematically represented by 

their intersection in the hill diagram. 

Still based on Figure 3, assume that the pump is running at 

a flux rate Qb1 and a total height Hb1. Changing the pump 

rotation from n1 to n2, keeping the flux constant, it is observed 

that there is an increase in the performance of the motor-pump 

set, but there is also an increase in the total height required by 

the pump from Hb1 to Hb2. As the equations below show, with 

a simultaneous increase in Hb and t, it is not possible to say 

whether there is an increase or decrease in the electrical power 

required by the hydraulic system. 

                 bHbQgmP    ,                     (9.a) 

                   
 t 

mP
el.P


  ,                            (9.b) 

where, t  is the total performance of the motor-pump 

system and Pm is the mechanical power of the motor-pump 

system. 

 
Fig. 3 Schematic representation of the hill diagram of the 

motor-pump set. 

 

Another detail to be analyzed in this system is the increase 

in Hb. Due to the increase in system speed, the pump flux is 

not kept absolutely constant, but it does increase. This can be 

easily explained, because when there is an increase in the total 

pressure of the pump it is immediately passed on to the 

system, slightly increasing its flux rate. In this way, the final 

balance of the system will be reached only in Qb2 and Hb2 and 

as shown in Figure 3. As the n2 rotation has not changed, the 

new equilibrium point of operation of the pump will finally be 

in Hb2` and no longer in Hb2. Thus, the system will reach a new 

equilibrium point at 2`. Note, that in this case, there was a 

small decrease in pump performance. This exemplifies that 

the energy balance of hydraulic pumping systems is not trivial 

and extremely non-linear. All this information about the hill  

diagram is very important to understand the algorithm stated 

in section VIII. 

VII. DETERMINING THE SYSTEM`S LOSS OF LOAD 

The calculation of the head loss in hydraulic installations 

for pumping drinking water (e.g. [1] - [3]) is a very important 

part of the simulation model presented in this work. 

At the point of escape, in each of the n consumers, the 

pressure can be easily calculated. Let Zi be the level between 

the i-th consumer and the centrifugal pump, Hb1 the total 

height of the pump and (p1+p2+...+pp) the pressure drop 

between the i-th consumer and the pump, in this way we have:  

                          
i Z- 

Lj
jp - b1H=ciH 



  ,                             (10)

 

where, Hci is the supply pressure on the i-th consumer; Hb1 is 

the total height of energy supplied by the pump; 
Lj

j
p is the 

pressure drop in the piping between the pump output and the 

i-th consumer; L is the set of all tubes that connect the pump to 

the i-th consumer and Zi is the existing level between the 

pump and the i-th consumer. 

In this way, applying equation (10) to all n consumers in the 

network, it is possible to evaluate supply pressures for 

consumers. This fact will make it possible to evaluate a region 

or group of consumers who have pressure that is either too 

high or too low, in addition to energy waste points. The 

crucial question now is to determine head loss of consumers. 

Thus, all flow around a pipe is subject to a pressure drop that 

is a function of the Reynolds number:  
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

 DvDv
= Re




  ,                         (11) 

where, Re is the Reynolds number [dimensionless],  is the 

specific mass of the fluid measured in the unit [kg/m
3
]; v is the 

velocity of the fluid in [m/s];   is the absolute viscosity in 

[kg/m.s];  is the absolute viscosity in [m
2
/s] e D is the 

diameter of the tube in [m]. For circular cross-section tubes, 

the Reynolds number can be expressed by: 

                

d

Q4
=Re ,                                (12) 

The mean values of absolute roughness are called 

equivalent or effective rugosities (). Thus, the following 

expression valid for any liquid or fluid can be verified 

experimentally: 

               
g2

v

D

L
f=h

2


 ,                                 (13) 

where, h is the head loss measured in [m] between points a 

and b of a given pipe; v is the flow velocity in [m/s]; f is the 

fluid friction coefficient [dimensionless]; L is the total length 

of the pipe in [m]; D is the pipe diameter in [m] and g is the 

acceleration of local gravity in [m/s
2
]. For computational 

purposes it is more convenient to express equation (13) as a 

function of the flux (Q) and not the speed (v) of the fluid. 

Thus, we have: 

              
5

2

D

Q
Lf0.0826=H  ,                          (14) 

Equation (14) provides the head loss in a circular 

cross-section pipe of length L, diameter D and flux Q. The 

only drawback of this equation is the determination of the 

friction factor (f). This is a dimensionless coefficient that is a 

function of the Reynolds number (Re) and the relative 

roughness (/d). Thus, to determine the factor f there are 

several ways: Blasius, Karman-Prandtl, Nikuradse, 

Colebrook and others equations. However, these methods are 

generally made up of a set of equations and not a single 

equation for performing that calculation. So it is difficult for 

the computer to decide which one to choose in each case. 

For this reason, the method used here was to interpolate the 

Moody Diagram (see Figure 7) through artificial neural 

networks. The Moody diagram (1944) is a logarithmic scale 

graph with the Reynolds number (Re) represented in the 

abscissa and in the ordinates the relative roughness (/d). 

Once these values are known, it is possible to read the friction 

factor of the pipe. In order for this diagram to be used 

correctly, it has been divided into three distinct regions: 

a) For Re <2000 the regime is considered laminar and the 

Poiseuille equation can be used in this situation: 

                Re

64
=f  ,                                           (15) 

Note that, in this case, the friction coefficient does not 

depend on the relative roughness. 

b) For Re between 2000 and 4000 the flow will have an 

unstable or critical transition regime from laminar to 

turbulent. In this case, in particular, the friction factor 

oscillates around a curve that can be considered independent 

of the relative roughness. 

c) For Re> 4000, the regime will be turbulent and then, the 

friction coefficient (f) will depend on the number of Reynolds 

and the relative roughness. This case is extremely non-linear 

and ideal for being represented by a neural network. 

However, when the turbulence is complete (Reynolds very 

high) then f will depend only on the relative roughness. 

The only drawback to be solved now is with respect to 

localized losses (e.g., pipe elbows, etc.). To solve this last 

problem, the concept of equivalent length over a physical 

element present in a pipe will be used. For example, an elbow 

that has a head loss J will have an equivalent length L, such 

that, if it were a pipe, it would have the same head loss J. 

Thus, this concept can be generalized to the other physical 

elements present in a pipe. 

In this way, knowing the equivalent length of a localized 

element of the pipe, then it can be treated as a pipe and, 

therefore, equation (14) can be applied on it as well. 

Therefore, the calculation of the head loss can be determined 

by the entire length of the pipe. 

VIII. FULL ALGORITHM 

In this section, we present the complete computational 

algorithm used to simulate the energy balance of the 

motor-pump system operating at variable speed. The steps of 

this algorithm are as follows: 

1) The flux (Q11, Q21, ..., Qn1) of the n consumers of the 

network are drawn using the Monte Carlo Method, as 

explained in section III, storing them in a vector. The second 

index of the elements of the flux vector indicates the initial 

values of the same and which must be corrected if the system 

changes its rotation. The sum of all these fluxes will provide 

the initial pump flux, that is: 

            


n

1=i
i1Qb1Q  ,                                      (16) 

2) The output pressure of the n consumers is calculated 

using the equation below: 

          

H = H  -  p  -  Zci1 b1 j

j J

i




 

 ,                            (17) 

This way, for the initial flux vector of the n consumers of 

the system (Q11, Q21 , ..., Qn1) and for an initial rotation (n1) of 

the pump, we have the corresponding initial supply pressure 

vector, also with n elements, represented by (Hc11, Hc21, ... , 

Hcn1). It is important to note that knowledge of the pump 

diagram (see section VI) is of fundamental importance, in this 

part of the algorithm, to obtain Hb1 from n1 and Qb1. The head 

loss calculation can be determined as explained in section 

VII. 

3) To incorporate the effect of changing the pump rotation, 

for example, from n1 to n2, the following correction of the 

supply pressures is made for each of the n consumers: 

          
H H H Hci2 ci1 b2 b1  ( )  ,                      (18) 

This will provide a second pressure vector (Hc12, Hc22, ..., 

Hcn2) for this hydraulic system. Note that Hb2 can be obtained 

from the hill diagram, interpolated by the artificial neural 

network, simply from n2 and Qb1. 

4) The second flux vector for the n consumers of the 

network is generated. This is done based on the vectors 

obtained in steps 1, 2 and 3 and replaced by the mathematical 

relation expressed below: 
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Q

Q

H

H

i2

i1

ci2

ci1









 

2
  ,                               (19) 

This expression evaluates the behavior of the consumer 

system, whose valve associated with the float is the main 

element. Thus, exponent 2 is a good approximation, but it is 

not a definitive value, requiring further studies. 

The sum of all the elements of the new vector representing 

the flux of consumers (Q12+Q22+...+Qn2) will be equal to the 

new flux Qb2 of the pump. This is in accordance with common 

sense, since the flux of the pump must change with the 

variation of the pump. 

5) The vector (Hc12, Hc22, ..., Hcn2) represents the output 

pressures of the n consumers still with pump flux in Qb1. Thus, 

a new output pressure vector (Hc12’, Hc22’, ..., Hcn2’) must be 

found that considers the new flux Qb2. This can be done 

relatively easily. 

Based on the new flow Qb2 and the new rotation n2, Hb2 is 

determined through the hill diagram, again using the 

interpolation by artificial neural networks. In this way, there 

will be two distinct situations: 

If (Hb2’-Hb2) > admitted error, then we return to step 3 of 

the algorithm and with the new pressure, the consumer 

pressures are recalculated and, therefore, the flux of each one. 

The new pump flux is then calculated and, with the same 

speed n2, the new Hb is obtained. This must be done until this 

condition is satisfied, in which case the condition below will 

finally be increased.  

If (Hb2’-Hb2) < admitted error, then in possession of Hb2’ 

and the flux vector (Q12, Q22, ... , Qn2) the new consumer 

output pressures are recalculated by the following expression: 

        

i Z- 

Jj
jp - 

b2
H=

 ci2
H , , 



   ,                 (20) 

At this point in the algorithm, the consumer flux vectors 

(Q12, Q22, ... , Qn2) and the consumer supply pressure (Hc12’, 

Hc22’, ..., Hcn2’) are already known for the new system rotation. 

The values of Qb2 and Hb2’ are also known and, thus, the 

energy analysis of the system can be started. However, before 

that, a summary of the tasks performed by this algorithm will 

be presented. 

a) The initial behavior of consumers is evaluated using the 

Monte Carlo method, generating flux vectors for consumers 

Qi1 and supply pressure for consumers Hci1. In this situation, it 

can be said that the system is operating with the pump at one 

rotation (n1), at a flux rate (Qb1) and at a total height of energy 

(Hb1). 

b) The rotation of the system is varied from n1 to n2. Thus, 

for the same consumers generated in step (a), it generates the 

new behavior of the system expressed by the new flux vectors 

of consumers Qi2 and supply pressure of consumers Hci2’. In 

this new state of operation the system has its pump operating 

at one rotation (n2), at a flux rate (Qb2) and at a total height of 

energy (Hb2’). 

Based on steps (a) and (b) it is observed that there is all the 

necessary data to perform an energy analysis of the system, 

both before and after the variation of the pump rotation. This 

will allow to evaluate and to compare the two states of the 

system. After carrying out the previous simulation, the 

mechanical powers before and after the variation of the pump 

speed can be calculated respectively as follows: 

         t1 /b1Hb1Qg
1elP    ,                      (21.a) 

          t2 / , b2
Hb2Qg

2elP  
  ,                      (21.b) 

Note that the hydraulic performances (t) are taken from 

the hill diagram and corresponding to the respective operating 

point. As already mentioned, the Monte Carlo method 

requires that the system be simulated a high number of times. 

In this way, this will allow to evaluate the optimum power of 

the system. 

That said, a new simulation is carried out using the 

previously presented algorithm, repeating its 5 steps 

previously described. Thus, the new powers for this second 

simulation are obtained from equations (21.a) and (21.b). If 

this procedure is repeated k times, there will be k hydraulic 

powers before the variation of the pump rotation and k 

hydraulic powers after the variation of this rotation. Thus, the 

mean power of the system before and after the variation of the 

pump speed will be respectively given by: 

                 
k

=1i
h1kP

k

1
=h1

_
P 

,                            (22.a) 

           

 
k

1=i
h2kP

k

1
=h2

_
P 

 ,                          (22.b) 

However, the volume of total water consumed is the same 

both for the initial situation of the system and for the case 

where the pump rotation variation occurred. Thus, the mean 

power given by equation (22.b) must have a correction term, 

since the pump's operating time is different for both cases. 

Thus, as the volume consumed is constant we have: 

     t2 . Qb2 = t1 . Qb1 = total volume consumed      (23.a) 

or 

               b2Q

b1Q

1t

2t   ,                                    (23.b) 

On the other hand, the total energy of the system is 

represented, respectively, before and after the variation of the 

pump rotation, by:
             

1t.h1P1E   ,                                   (24.a) 

            2t.h2P2E   ,                                  (24.b) 

Representing the total energies of the system by E1 (before 

the variation of rotation) and E2 (after variation of rotation), 

for the same time interval, we have:                                 

             
1t

b2Q

b1Q
h2

_
P2E   ,                               (25) 

Now, as the last step to correct the hydraulic power to be 

determined for the system working with variable rotation, we 

must still perform one last mathematical artifice.  

Thus, observing Equation (25) it can be concluded that the 

mean power 2h

_
P  must be multiplied by the factor 

2bQ
1bQ  to 

be valid at the same interval t1 of the initial situation. So, we 

finally have to: 

           

 
k

1=i b2kQ

b1kQ
h2kP

k

1
h2

_
P     ,                         (26) 

It should be noted that, to perform the comparison between 

the mean powers before and after the variation of the pump 
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rotation, they must be represented in the same time interval, in 

this case, t1. 

IX. RESULTS ACHIEVED IN NUMERICAL 

SIMULATIONS 

In this section, the graphical results obtained in the 

simulation of the pumping system with variable rotation are 

presented for a typical and real case in the supply of drinking 

water in the Vista Verde neighborhood existing in the city of 

Itajubá/Brazil. The chosen installation is a pumping station 

type in march. The city's main reservoir, which is at an 

altitude of 899 [m], feeds the pump suction reservoir at 850 

[m] by gravity. Figure 4 shows a sketch of the Vista Verde lift 

station.  

 
Fig. 4 Pumping station in the Vista Verde neighborhood. 

 

The pump's suction reservoir has a float valve to control its 

level. The pumps are installed below the level of the reservoir, 

which characterizes being drowned, very common in this type 

of installation in Brazil. In the suction line of each pump, with 

a diameter of 4’’, a gate valve is installed that remains open in 

the assembly that is in operation and closed in the reserve. In 

the case of the repression line with a diameter of 3’’, each 

pump at its output has a gate valve, which always remains 

open. 

A little above the pump output, a Bourdon-type pressure 

gauge and a pressure switch are installed that turn the 

assembly off when the pressure reaches 12 kg / cm2. The 

pump feeds the main line of the neighborhood, towards its 

reservoir at elevation 955 [m]. In this sense, there is 

distribution to consumers. The line has a “by pass” that feeds 

the reservoir and a unidirectional valve that, in return, serves 

consumers by gravity. 

The pump turns on again through a timer control, installed 

on the electrical panel, two hours after shutdown. There are 

78 houses mirrored on the hill where the Vista Verde 

neighborhood is located. The reading of the hydrometers, of 

the residences that are supplied by the pumping system, is also 

necessary for the simulation. As the number of houses in this 

neighborhood is relatively small, this facilitated data 

collection. 

Figure 5 shows the schematic of one of the four stage 

pumps inside the lift station machine room. The drowned 

pump sucks water from the reservoir and presses it back to the 

main distribution line, where a gate valve is installed at the 

pump output, which always remains open, and a Bourdon 

pressure gauge for reading the output pressure. The motor that 

drives the pump is a monoblock type. 

Figures 6 and 7 represent, respectively, the results obtained 

by the neural training of the hill diagram of the centrifugal 

pump in the Vista Verde neighborhood and the Moody 

diagram for the determination of pressure losses. As seen in 

the previous sections, these two diagrams are very important 

for the execution of the algorithm presented in section VIII. 

Figure 8 is an aerial view of the UNIFEI University Campus 

where the hydraulic tests were carried out to obtain 

experimentally the hill diagram shown in Figure 6, which was 

later interpolated by artificial neural networks. 

 

 
Fig. 5 Machine room of the Vista Verde pumping station. 

 

Figure 9 shows the graphic entry of the hydraulic drinking 

water supply in the graphic editor, which is one of the integral 

parts of the developed simulator. The graphical interface of 

the software in Figure 9 was originally developed in 

Portuguese. Also note that the black background is still an 

inheritance of the old DOS environment, still with little use at 

the time of Windows 95. Figure 10 shows the results of a 

Monte Carlo simulation with the hydraulic system working at 

variable speed. These results follow the criteria as presented 

by the algorithm in section VIII. Figure 11 shows a simulation 

for the same hydraulic installation. The difference here is that 

the system is working with constant rotation. 

Comparing the two graphs present in Figures 10 and 11, it 

can be seen that the variable rotation system works with a 

mean mechanical power equivalent to only 80.23% of that 

required for the system working with constant rotation. This is 

an important indication that a control of drinking water 

pumping at variable rotation in a hydraulic installation with 

several consumers present is a good option regarding the 

aspect of energy conservation and financial savings in the 

electricity bill for the company COPASA, provider of this 

type of service. However, for this an initial economic 

investment for the purchase of frequency inverters, digital 

computers and additional sensors will be necessary.   

This application has some restrictions that will be 

mentioned below. It is important to consider this information 

when simulating the system, so that the software in question is 

not misused. These limitations are:  

1) All hydraulic installation tubes are admitted to have a 

circular cross section;  

2) Located elements of the valve type (drawer, globe, 

check, etc.) were not considered in the elaboration of this 

simulator;  

3) The coupling elements of the tee and cross type are all 

considered to have an inclination of 90 degrees (if these 

elements, of the installation to be simulated, do not have this 
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inclination angle, then they should be approached to 90 

degrees);  

4) Elbows can have slopes of 90 or 45 degrees (slopes 

outside these values cannot be used);  

5) It is only possible to simulate a hydraulic installation that 

has a single centrifugal pump (two or more pumps are not 

allowed by the simulator);  

6) If it is desired to use a new centrifugal pump different 

from the one that this software supports then, a new neural 

network must be trained with experiments and tests done in 

the laboratory for the new centrifugal pump considered; 

 7) The simulator only accepts hydraulic installations with 

configurations of the fishbone type (ring installations are not 

allowed). 

 
Fig. 6 Hill diagram that represents the basic operating field of 

the centrifugal pump used in the Vista Verde neighborhood of 

Itajubá. 
 

 
Fig. 7 Interpolation of the Moody diagram by neural network. 

 

 
Fig. 8 Aerial image of the José Rodrigues Seabra Campus 

(UNIFEI) in December 2015. 

 
Fig. 9 Isometric of the hydraulic installation in the Vista 

Verde neighborhood. 

 

 
Fig. 10 Monte Carlo simulation with the hydraulic system 

working with variable rotation. 
 

 
Fig. 11 Monte Carlo simulation with the hydraulic system 

working with constant rotation. 

X. CONCLUSION 

The software developed in the Matlab environment was 

developed with the aim of creating a generic simulator 

applicable to a very large and distinct range of hydraulic 

pumping installations, given, of course, the reservations 

indicate in section IX. 

In this way, this simulator can be used not only for the 

hydraulic installation of the Vista Verde neighborhood 

located in the city of Itajubá/MG (Brazil), but also for other 

hydraulic installations, thanks to the mathematical tools used 

in its elaboration. Therefore, the partial generalization of this 

simulator was obtained basically thanks to three basic aspects: 

1) Use of neural networks for the interpolation of the hill 

diagram, which describes the basic field of operation of 

centrifugal pumps; 

2) Development of a graphic editor that allows you to 

recognize the physical and geometric characteristics of a 

hydraulic installation, simply from the drawing, and from 
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there, calculate the head loss of the entire hydraulic 

installation built in the editor (you can also be improved in the 

future); 

3) Application of the transposition of the results to predict 

the behavior of consumers of hydraulic drinking water 

networks for those installations other than the hydraulic 

installation studied and extensively tested in the city of 

Itajubá/MG (Brazil); 

4) The methodology developed here may, in the future, be 

extrapolated to other types of hydraulic installations, 

obviously with the improvement and appropriate restoration 

of the developed software. 
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