

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 6, June 2020

 8 www.erpublication.org


Abstract— The artificial immune system (AIS) is an approach of

bioinformatics, which is the concept of artificial intelligence

systems, problem-solving based on the principles, functions and

operating models of the human immunity system. AIS has been

recently applied to computers security. One of the important

features in such systems is that the data is constantly changing,

and there is a constant change back and forth between the

normal and abnormal codes. This has led to the construction of

an artificial immune system that is effective in dynamic

environments and for large data. We propose an immune

algorithm that can work effectively in term of running time in

dynamic environment.

Index Terms—Detector, intrusion, immune system.

I. INTRODUCTION

Following the traditional approach, AIS is considered to be

an effective method to protect static data sets [1]. That is, the

data to be protected is a fixed set over time. And this also

reflects the exact mechanism of action of the biological

immune system: the self types of the normal biological body

are always constant. But if you carefully analyze the security

problem, you will see many unreasonable situations. A

typical example is: A website address which is considered

healthy, but may be hijacked by bad hackers and changed

content with bad content. After a while, the website owner

regains control (for example, through a domain name

provider, through a server provider, etc.), and the internal

website returns to its original form. Thus, if the website

address is a data element to be protected, it can be likened to a

body self or a foreign self depending on the particular

circumstances. Therefore, it is important for AIS to be

applicable in dynamic environments.

In this paper, Artificial Immune System (AIS), a

multidisciplinary research area that combines the principles

of immunology and computation, is used for experiments on

the proposed representation.

AIS is inspired by the observation of the behaviors and the

interaction of normal component of biological systems - the

self -and abnormal ones - the nonself. Negative Selection

Algorithm (NSA) is a popular model of AIS mainly designed

for one-class learning problems.

 Duong Thuy Huong, University of Information Technology and

Communications, Thai Nguyen, Thai Nguyen City, Vietnam.

 Ngo Thi Tu Quyen, Faculty of Mathematics, Thai Nguyen University of

Education, Thai Nguyen City, Vietnam.

 Le Bich Lien, Faculty of Mathematics, Thai Nguyen University of

Education, Thai Nguyen City, Vietnam.

Nguyen Van Truong, Faculty of Mathematics, Thai Nguyen University

of Education, Thai Nguyen City, Vietnam.

Given a collection of self patterns S, a typical NSA comprises

of two phases: detector generation and detection [5]. In the

detector generation phase (Fig. 1.a), the detector candidates

are generated randomly and censored by matching them

against given self samples taken from the set S. The

candidates that match any element of S are eliminated and the

rest are kept and stored in the set D. In the detection phase

(Fig. 1.b), the collection of detectors are used to distinguish

self (system components) from nonself (outlier like viruses,

worms, etc.). If an incoming data instance matches any

detector, it is claimed as nonself, and it is claimed as self

otherwise.

From a machine learning perspective, negative selection is

usually described as an anomaly detection technique. Since

its introduction, NSA has been a source of inspiration for

many computing applications, especially for intrusion

detection [6], [7].

Fig. 1. Outline of a typical negative selection algorithm [13].

With respect to binary-based AIS using discrete detector set,

to the best of our knowledge, the only algorithm for

generating a perfect and discrete set of detectors was

proposed by T. Stibor in [11] and by S. T. Wierzchoń in [14].

In the below figure, we illustrate the process for generating

a detector set by using the number of five contiguous matches

required for a match. The string to be protected is logically

segmented into five equal-length “self” strings. To generate

the detector, random strings are produced and matched

against each of the self strings. The first two strings,

00000111 and 00000010, are eliminated because they both

match self string 00000110 at at least five contiguous

positions. The string 11101001 fails to match any string in the

self at at least five contiguous positions, so it is accepted into

the detector set.

Detector generation for artificial immune system in a

dynamic environment

Duong Thuy Huong, Ngo Thi Tu Quyen, Le Bich Lien, Nguyen Van Truong

Detector generation for artificial immune system in a dynamic environment

 9 www.erpublication.org

Figure 2. Generation of Valid Detector Set

 Next section presents algorithms to update detector set

when ever self elements delete from or add to self set.

II. DETECTOR GENERATION ALGORITHMS IN A DYNAMIC

ENVIRONMENT

A. Some notations

S: a set of self strings (in binary form) of equal length (= L) of

data to be protected.

R: number of consecutive bit positions to match.

Match: Match(a, b) = true if 2 strings a, b match at least r

consecutive positions.

Detector(d): a string that does not match any data series to be

protected.

Detector set (D): a set of detectors.

Self set (S): a set of self

N (Nonself): a strange bit string appearing in S

Holes: strange strings appearing in S that detectors cannot

detect.

B. Classical detector generation algorithm

Input: The data set needs to be protected.

Output: Positioning matrix A and detector set D

From the initial input data set, we create a set of S selfs

including s selfs that are binary strings with a fixed length of

L, with each generated s self, we construct a locating matrix

A Matrix A has size 2
R
 * (L - R + 1) (with line index from 0

-> 2
R
 - 1, and column index from 1 -> L - R +1), initialized to

original value beginning with 0. Matrix construction

algorithm A is shown below. After creating matrix A we use

the algorithm to generate the detector.

Algorithm for building a positioning matrix A is described as

follows:

Initially initialize A[i, j] = 0 with i = 0 .. (2
R
 -1) and j = 1 ..

(L-R + 1)

From the initial data set, we create bit sequences of fixed

length L

Each time the bit stream s is generated

For j  [1, L-R + 1] do

Begin

s1 = copy (s, j, R);

 i = decimal integer of the string s1;

A[i, j] = A[i, j] +1;

 End;

Algorithm to generate all detectors is as follows.

Denote nd is the number of detectors, de is the array of

probes, t is the array of intermediate strings, and dt is the

number of elements of the array t.

Algorithm initialization array D:

nd = 0;

For i  [0, 2
R
 -1] do

If A[i,1] = 0 then

Begin

Inc(nd);{this means increase nd by 1}

De(nd) = string of length R bits has a decimal value of i;

End ;

For i  [2 ,L - R + 1] do

Begin

dt = 0;

For j  [1,nd] do

Begin

s1 = copy(de[j],i,R-1);

d = decimal integer of the string (s1+ “0”) ;

If A[d, i] = 0 Then

 Begin

 Inc(dt);

 t[dt] = de[j] + “0”;

End;

 d = decimal integer of the string (s1+ “1”);

 If A(d, i) = 0 Then

 Begin

 Inc(dt);

 t[d] = de[j] + “1”;

 End;

 nd = dt;

 For k  [1,nd] do

 de[k] = t[k];

 End;

End;

Suppose we have set S of the series of bit bits of length L = 5

and R = 3, S = {s1 = 01011, s2 = 11001, s3 = 10110, s4 =

00101, s5 = 01010}. Then set D consists of 6 detectors: D =

{d1 = 00000, d2 = 01100, d3 = 01111, d4 = 10000, d5 =

11110, d6 = 11111}.

C. Detector generation algorithm in case self are added to

self set S

Suppose we have created a localization matrix A and a set of

D-detectors in the absence of an increase in the S-self set.

When the S self set increases, the number of detectors in the

D detector set can be reduced or remained the same. And we

can conduct a new D detector set for the new self set after

increasing as the algorithm is presented in section B.

However, this approach is not really effective because we

have to recreate the new positioning matrix A and thereby

build a new set of D detector. Here we propose a faster

generation algorithm and take advantage of the matrix A and

set D detector has created.

Input: Set S1 is the set of self added to S

The A-locating matrix and the set of D selfs are created

corresponding to the initial set of S selfs

Output: Positioning matrix A and corresponding detector set

D after addition;

For each s s1, we update the matrix A according to the

matrix construction algorithm presented. During this update

process, if encountering a position where A[i, j] is 0 then

changes to 1, then we proceed to create a new set of detectors

D1 at this position. We use two procedures to create the array

of tuners that go to the left (from column j position to 1)

called LeftDetec and the array when going to the right (from

column j position to L-R + 1) called RightDetec. These two

procedures will be presented below. Then proceed to enroll

the detector set D1 and remove d  D1 if it is in D.

The algorithm description is as follows:

For every s S1 do

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 6, June 2020

 10 www.erpublication.org

For j [1, L-R + 1] do

Begin

s1 = copy (s, j, R);

i = decimal integer of the string s1;

if A[i, j] = 0 then

begin

nd1 = 1;

 nd2 = 1;

 de1[1] = a binary string of length R with a decimal value of

i;

 de2[1] = de1[1];

 LeftDetec(nd1, j);

 RightDetec(nd2, j);

 nd3 = 0;

 For i = 1 To nd1 do

 For j = 1 To nd2 do

 Begin

 nd3 = nd3 + 1;

 de3[nd3] = de1[i] + Copy(de2[j], R + 1,

length(de2[j]);

end;

Open the file containing detector D set to read the string array

with the number of nd elements;

Delete this file;

n = nd;

For j = 1 To nd do

If de3[i] = de[j] Then

Begin

 n = n - 1;

 de[j] = "";

 End;

Open the file to write data:

Line 1 contains the number n;

The next line contains the string de[i] with i  [1, n];

End;

End;

Denote t, de1 are binary string arrays and dt, nd1 is the

number of corresponding elements (t is used as an

intermediate variable), respectively.

+, The LeftDetec procedure creates the array of detectors to

the left

LeftDetec Procedure (var nd1 As Integer; vtri As Integer);

For i = (vtri - 1) downto 1 do

Begin

dt = 0;

For j = 1 To nd1 do

begin

 s1 = copy (de1[j], 1, R - 1);

d = decimal integer of the string (s1 + "0");

 If A[d, i] = 0 Then

Begin

 dt = dt + 1;

 t[dt] = "0" + de1[j];

End;

 d = d + 2
(R-1)

;

 If A[d, i] = 0 Then

Begin

 dt = dt + 1;

 t[dt] = "1" + de1[j];

 End;

 End;

 nd1 = dt;

 For k = 1 To nd1 do

 de1[k] = t[k];

end;

end;

+, The RightDetec procedure creates the detector array going

to the right

RightDetec Procedure (var nd1 As Integer; vtri As Integer);

Begin

h = 1;

For i  [2, L - R + 1] do

Begin

dt = 0;

 For j [1, nd1] do

 Begin

Inc (h);

 s1 = copy (de (j), h, R-1) ;

 d = decimal integer of the string (s1 + "0");

 If A[d, i] = 0 Then

 Inc (dt);

 t[d] = de[j] + "0";

 End;

 d = decimal integer of the string (s1 + "1");

 If A[d, i] = 0 Then

 begin

 Inc (dt);

 t[d] = de[j] + "1";

 End;

 nd = dt;

For k  [1, nd] do

 de[k] = t[k];

End;

End;

End;

D. Detector generation algorithm in case self are deleted

from self set S

Similar to the case of increased S self set, in the case of

reduced S self set we also have a detector generation

algorithm. Note that in this case the set of probes can be

increased or remained constant, depending on the position

A[i, j] changes the state from 1 to 0;

Input: Set S1 is the set of selfs to be deleted in the original S

set

The A-locating matrix and the set of D selfs are created

corresponding to the initial set of S selfs

Output: Positioning matrix A and corresponding detector set

D after deletion;

In this algorithm, we will meet the state A[i, j] whose value is

greater than 0 returns to 0, if encountering such a position, we

proceed to create a new set of probes D1 in position. this

position. Then add set D1 to the original set D. The algorithm

description is as follows:

For every sS1 do

For j  [1, L-R + 1] do

Begin

A[i, j] = A[i, j] - 1;

if A[i, j] = 0 then

begin

s1 = copy (s, j, R);

i = decimal integer of the string s1;

nd1 = 1;

 nd2 = 1;

 de1[1] = a binary string of length R with a decimal value of

i;

 de2[1] = de1[1];

 LeftDetec(nd1, j);

Detector generation for artificial immune system in a dynamic environment

 11 www.erpublication.org

 RightDetec(nd2, j);

 nd3 = 0;

 For i = 1 To nd1

 For j = 1 To nd2

 Begin

 nd3 = nd3 + 1;

 de3[nd3] = de1[i] + Copy(de2[j], R + 1, length(de2[j]);

 End;

Open the file containing detector D set to read the string array

with the number of nd elements;

Delete this file;

For j  [nd, nd + nd3] do

 De[j] = de3[i-nd];

Open the file to write data:

Line 1 contains the number nd + nd3;

The following lines write the string de[i] with i 

[1,nd+nd3];

End;

End;

III. DISCUSSIONS

In the process of creating a detector, in fact we do not have

to save the self set but only the positioning matrix A because

when creating the set of detector D we only rely on matrix A.

Because the size of table A depends on the length L and the

number of neighboring bits R. So we can choose L and R

reasonable to store on internal memory (RAM). Saving

matrix A is much less memory-intensive than saving self set

S of bit sequences of fixed length L, especially when the

input data is large.

Because A is a 2-dimensional table, stored on internal

memory, access to element A[i, j] takes only O(1). So the

computational speed will increase much more than having to

read the self strings from external memory. So even if the

protection data has changed, very large, we still only need

table A with 2
R
 rows, (L-R + 1) column is enough.

In the case of increasing S self we only handle A[i, j]

positions with transition state from 0 to 1, so we can also use

the method when encountering the position where A[i , j]

with the above properties, we do not immediately handle but

re-mark, once we have read all the added self sets, we review

the matrix and handle the highlighted selfs. Alternatively, we

convert i to a binary bit sequence of length R and then

compare it to the string of R bits removed from position j of

each d in D, if equal then we remove this detector from D

However, both of these methods are not as efficient as the

method described above, especially in the case of a large D

detector set, because accessing D now takes a lot of time and

takes up storage space for string array in comparision with

creating the new set of detectors.

In fact, in matrix A there are locations with a value of 0 but

not involved in the process of creating a detector. So when we

meet such positions, how will we handle them effectively?

By assuming in these selfs we can create a new set of

detectors called D1, and we can easily prove that D1D

=. Hence D - D1 = D, that is, D remains unchanged.

From the above analysis, we can find the solution: From

the set of detector D, we construct the AD matrix to build the

positioning matrix A with the input set D whenever dD is

created with the following change:

For j  [1, L-R + 1] do

Begin

s1 = copy (s, j, R);

i = decimal integer of the string s1;

AD[i, j] = -1;

End;

And at selfs A[i, j]  0 then we assign AD[i, j] = 1, then the

positions AD[i, j] = 0 are the positions not participating in the

detector generation process. So in the process of creating a

new detector when encountering state A[i, j] changes from 1

to 0, we check if AD[i, j]  0 then proceed to create a detector

and simultaneously update the AD matrix.

IV. CONCLUSIONS

This article has provided an overview of AIS and propose a

new algorithm in the field. The algorithm is simulated in

dynamic environment effectively in term of running time.

In the future, we will develop this research in the following

directions: 1-Improve, upgrade illustration program so that

the program can be applied in the network environment; 2-

combine with advanced algorithms of AIS such as: AiNet,

RAIN, Clone; 3 - Improve algorithms to handle in case the

existence of holes self.

ACKNOWLEDGEMENT

This research is based upon work supported in part by Thai

Nguyen University for university’s research, code number

DH2017-TN01-03.

REFERENCES

 .

[1]. L. N de Castro and J. Timmis, Artificial Immune Systems: A New

Computational Intlligence Approach, Springer-Verlag, 2002.

[2]. M. Elberfeld and J. Textor. Efficient algorithms for string-based

negative selection. In International Conference on Artificial Immune

Systems, pp. 109–121, 2009.

[3]. M. Elberfeld and J. Textor. Negative selection algorithms on strings

with efficient training and linear-time classification. Theoretical

Computer Science, 412(6):534 – 542, 2011.

[4]. F. Gonzalez, D. Dasgupta, J. Gomez, “The effect of binary matching

rules in negative selection”, in: Genetic and Evolutionary Computation

Conference (GECCO), pp. 195–206, 2003.

[5]. Z. Ji. Negative Selection Algorithms: from the Thymus to V-detector.

PhD thesis, The University of Memphis, August 2006.

[6]. Z. Ji, D. Dasgupta, “Revisiting negative selection algorithms”,

Evolutionary Computation, vol. 15, no. 2, pp. 223–251, 2007.

[7]. J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J.

Twycross. Immune system approaches to intrusion detection - a Review.

Natural Computing, 6:413–466, Dec. 2007.

[8]. L. X. Peng, Y. F. Chen, “Positive selection-inspired anomaly detection

model with artificial immune”, in: International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, pp.

56–59, 2014.

[9]. P. H. Pisani, A. C. Lorena, A. C. Carvalho, “Adaptive positive selection

for keystroke dynamics”, J. Intell. Robotics Syst., vol. 80, no. 1, pp.

277–293, 2015.

[10]. K. B. Sim, D. W. Lee, “Modeling of Positive Selection for the

Development of a Computer Immune System and a Self-Recognition

Algorithm”, International Journal of Control, Automation, and Systems,

vol. 1, no. 4, pp. 453–458, 2003.

[11]. T. Stibor, K. M. Bayarou, and C. Eckert, “An investigation of R-chunk

detector generation on higher alphabets,” in Genetic and Evolutionary

Computation Conference (GECCO), vol. 3102 of Lecture Notes in

Computer Science, pp. 299–307, 2004.

[12]. D. Y. Yeung, Y. Ding, “Host-based intrusion detection using dynamic

and static behavioral models”, Pattern Recognition, vol. 36, no. 1, pp.

229–243, 2003.

[13]. H. Yang, T. Li, X. Hu, F. Wang, Y. Zou, “A survey of artificial

immune system based intrusion detection”, The Scientific World

Journal, 2014.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869 (O) 2454-4698 (P), Volume 10, Issue 6, June 2020

 12 www.erpublication.org

[14]. S. T. Wierzchoń. Generating optimal repertoire of antibody strings in

an artificial immune system. In IIS’2000 Symposium on Intelligent

Information Systems, pp. 119–133, 2000.

[15]. W. Zheng at el, A Rapid r-continuous Bits Matching Algorithm for

Large-scale Immunocomputing, in Proceedings of the International

Conference on Computer Science and Software Engineering, 431- 434,

2008.

BIOGRAPHY

Duong Thuy Huong is a lecturer in the Faculty of Information Technology -

University of Information Technology and Communications, Thai Nguyen.

She finished her master course on Computer science at Thai Nguyen

University in 2014. She has taught a wide variety of courses for UG students

and guided several projects.

Ngo Thi Thu Quyen is a lecturer in the Faculty of Mathematics at Thai

Nguyen University of Education, from where she received a Bachelor of

Informatics in 2000. She is a Ph.D. at Thai Nguyen University of Education.

She teaches many course for IT students. She has published several papers in

national and international journals.

Le Bich Lien is a lecturer in the Faculty of Mathematics at Thai Nguyen

University of Education, from where she received a Bachelor of Informatics

in 2004. She finished her master course on Computer science at Thai Nguyen

University of Information and Communication Technology in 2007. She has

published several papers in national and international journals.

Nguyen Van Truong is a lecturer in the Faculty of Mathematics at Thai

Nguyen University of Education. He has taught a wide variety of courses for

UG students and guided several projects. He has published several papers in

national and international journals. His research interests are embedded

systems and artificial immune systems.

