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Abstract—Cracks are critical defects in material surfaces 

such as steel and concrete. Many of the currently available 

methods mainly focus on crack detection in uniform or 

non-textured surfaces. This paper presents a machine vision 

scheme for crack detection in randomly textured surfaces, which 

could arise from the natural pattern of a material surface, or the 

result of a high-resolution image. Dark objects in the image are 

presented by cracks and the background texture. It makes the 

detection task very difficult. 

The proposed method involves preprocessing and 

pixel-connection. It first uses the automatic thresholding and 

morphological thinning to convert dark objects to single pixel 

thickness. A spiral search then performs to link dark pixel points 

based on their neighboring distances and direction angles. The 

distance and angle in the search process can be obtained from a 

pre-constructed spiral look-up-table. No computation of the 

geometric features is required, and thus the search of the closest 

neighboring point is very fast. Experimental results on a test set 

of 120 metal images show the proposed method can detect all 

cracks without false alarms. It is also demonstrated that the 

proposed method can be applied to non-textured images, such as 

concrete surfaces. 

 

Index Terms—Crack detection; Defect inspection; Edge 

linkage; Spiral search.  

 

I. INTRODUCTION 

  Cracks are severe defects in material surfaces such as steel 

plates and concrete structures. Crack detection prevents the 

damages, degradations, or failures of end-user products. 

Non-contact inspection of cracks using machine vision 

techniques has attracted great attention in industry in the last 

decade.  

  For metal surfaces in the manufacturing industry, spatial and 

spectral methods have been proposed to detect cracks in steel 

materials. Landstrom and Thurley (2012) presented a 

morphology-based crack detection method for steel slabs. 

The 3D profile image is first segmented using the 

morphological operations. The resulting connected regions 

are assigned a crack probability using a logistic regression 

model. Senthikumar et al. (2014) used the iterative 

thresholding technique to detect cracks in metal surfaces. 

Choi et al. (2012) and Choi et al. (2014) used the Gabor filter 

to detect seam cracks in steel plates. The geometric and 

gray-level features of suspected cracks are further evaluated  

using the support vector machine (SVM) to remove noise. 

Their proposed methods are restricted to the detection of 

vertical and horizontal cracks. Malekian et al. (2012) 

proposed a series of image processing operations to detect 
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and localize cracks in hot steel slabs. The wavelet transform is 

first used to sharpen the crack edge and weaken noise. 

Anisotropic diffusion filter and adaptive Gaussian filter are 

then applied to smooth the image. An edge detector is further 

used to detect edge points of potential cracks. Morphological 

filtering is carried out to remove the background noise and fill 

the gaps of a crack. K-means clustering with color features, 

and neural networks with geometrical features of clustered 

regions are also proposed as an alternative to detect cracks in 

steel slabs. The extracted features in their paper focus only on 

vertical and horizontal cracks. Aarthi et al. (2013) applied the 

wavelet transform to detect cracks in metal surfaces. 

Statistical features in the Haar-wavelet decomposed image 

and the SVM classifier are used to show the pixel points of a 

crack. Neogi et al. (2014) reviewed vision-based methods for 

steel surface inspection. It discussed spatial domain- and 

spectral domain-based methods for the detection of various 

types of defects in steel surfaces. 

For concrete surfaces in the construction industry, the image 

processing approach becomes important and effective for 

non-destructive testing and monitoring. Cracks in concrete 

surfaces are usually dark objects that show thin lines and local 

symmetry across their center axes. Nguyen et al. (2014) 

utilized the two crack properties to design a filter for crack 

detection in the concrete surface image. They then applied 

thresholding to segment the filtered image, followed by 

morphological thinning and cubic splines to fit the pixel 

points of a possible crack. Zhang et al. [2014] proposed an 

automatic crack detection method for subway tunnel 

monitoring. Morphological operations and thresholding are 

used to initially segment crack and non-crack background. 

Distance histogram-based shape descriptor and a classifier are 

then further used to remove mis-identified objects. Fujita and 

Hamamoto [2011] studied crack detection from noisy 

concrete surfaces. They first subtracted the original image 

from its media-filtered image to extract possible cracks. The 

multi-scale line filter with the Hessian matrix is then applied 

to retain line-shaped objects. Probabilistic relaxation and a 

locally adaptive thresholding are finally performed to detect 

cracks. The computation of the line-filter and the probability 

are very time-intensive, and the detected pixels of a crack may 

not be connected. Yamaguchi et al. [2008] and Yamaguch and 

Hashimoto [2010] considered the crack point connection in 

the concrete image as a percolation model. The central pixel 

in a local window is evaluated according to a cluster formed 

by the percolation processing using the brightness and shape 

criteria of a crack. Choudhary and Dey [2012] used fuzzy 

logic and neural networks to classify cracks in concrete 

surfaces. Prasanna et al. [2012] extracted the gray-level 

histogram-based features from the concrete image. The SVM 

classifier is then applied to identify cracks in the concrete 

surface. Hu et al. [2010] proposed a Hough transform (HT) 

based method to extract crack features in concrete or metal 

surfaces. The SVM classifier with the extracted HT features is 
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then used to identify crack points in the image. 

The currently available machine vision methods for crack 

detection in material surfaces generally assume that the 

surface in the sensed image is uniform or non-textured. Many 

of the methods are based on local crack features, and detect 

only individual pixels of a crack in the image. They may not 

connect the detected pixels to form the complete shape of the 

crack. This could be a serious problem when parts of a crack 

are missing. The discontinuous crack may not be fully 

connected in nature, or is due to the low-contrast intensity 

with respect to its surroundings in the image. 

In this study, we present a machine vision scheme for crack 

detection in randomly textured surfaces. The texture could be 

the natural pattern of a material surface. It could also be the 

result of magnifying micro-cracks in a high-resolution image. 

Many metal surfaces under high-resolution imaging create 

detailed texture patterns in the images. The proposed method 

will be evaluated with micro-crack detection in casting 

surfaces. Figure 1 demonstrates the metal surfaces in 

high-resolution images, where (a) is a defective surface that 

contains a fine, thin crack, and (b) is a defect-free surface. The 

metal surface under high-resolution imaging presents a 

random texture. The crack is line-shaped, but does not appear 

as a straight line. Some portions of the crack are disconnected. 

The crack in Figure 1(a) is indeed darker than its 

surroundings. However, the background also presents random 

dark line-shaped objects. Figures 1(c) and (d) further display 

the Sobel edge images of the metal surfaces images in (a) and 

(b), respectively. The dark edges are randomly presented in 

the gradient images. The gradient magnitudes cannot visually 

distinguish the crack from the background edges. As seen in 

Figure 1(c), the gradient magnitudes of most crack edges are 

smaller than those of the randomly-textured edges. 

 

 
 

Figure 1. Randomly textured metal surfaces: (a) defective 

image with a crack; (b) defect-free image; (c), (d) respective 

gradient images of (a) and (b); (e), (f) respective gray-level 

histograms of (a) and (b). 

To detect and locate irregular and discontinuous cracks in 

randomly-textured surfaces, we propose a fast spiral search 

algorithm to connect the individual pixel points of a crack. 

The original gray-level image of a metal surface is converted 

to a binary image using a simple thresholding to segment the 

dark objects in the image. The morphological thinning is then 

applied to the binary image so that the resulting dark objects 

are 1-pixel width. The spiral search process is performed to 

the thinned dark points. To trace the pixel points along a 

crack, an object point in the thinned image is taken as the 

center of the spiral. The spiral then emanates from the center 

and the first encountered point gives its closest neighbor. It is 

well suited to trace the discontinuous segments of the crack. If 

there are more than one neighboring points in the search, the 

one with the coherent direction is chosen for the connection. 

The irregular and discontinuous line cracks can thus be 

effectively extracted from the random background. 

To efficiently trace the neighboring points with the shortest 

distance and the most consistent direction using the spiral 

search, a spiral Look-Up-Table (LUT) is constructed off-line. 

It stores the x- and y-coordinates, distance and direction angle 

of each spiral point in the sequence with respect to the spiral 

center. The point number in the spiral sequence is used as the 

index of the LUT. It allows fast access to the geometric 

features without any computation. The search of the closest 

neighboring point can then be simplified. The proposed 

method can be effectively and efficiently applied to crack 

detection in either non-textured or randomly-textured 

surfaces. 

The rest of the paper is organized as follows. Section 2 

presents the creation of a digital spiral and the construction of 

the spiral look-up-table. It then describes the spiral search 

procedure for the linkage of crack points. Section 3 discusses 

the experimental results and the performance of the proposed 

crack detection method on randomly-textured metal surfaces. 

The concluding remarks are addressed in Section 4. 

II. THE CRACK DETECTION METHOD 

The proposed method for crack detection in 

randomly-textured surfaces involves four phases, which are: 

1)    Thresholding: convert the gray-level image into a binary 

image using automatic thresholding, where the black 

objects are possible cracks and random background 

textures.  

2)    Thinning: use the morphological thinning to reduce all 

black objects in the binary image to single pixel 

thickness. 

3)    Linking object pixels by spiral search: use the spiral 

search to link dark pixels, either connected or 

dis-connected, in the thinned image into line segments. 

4)    Connecting line segments: connect line segments to form 

a complete crack based on the neighborhood distances 

and directions of individual line segments. 

The core of the proposed method is mainly based on the 

spiral search. The off-line creation of a digital spiral sequence 

and the construction of the spiral Look-Up-Table are first 

described. The detailed procedure of the crack detection is 

then presented. 

A. Creation of digital spiral and LUT 

A simple form of spirals is given by the Archimede’s spirals, 

which is mathematically defined by  
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 ar                                   (1) 

 

where r is the radial distance of a point on the spiral with 

respect to the spiral center; 

   is the polar angle, measured in radians; 

  a is a constant that controls the spacing between successive 

turnings. 

A point p with polar angle )( p  on the spiral can be defined in 

Cartesian coordinates of a digital image by 

 

  )](cos)([)( ppaIntpx              (2a) 

)](sin)([)( ppaIntpy              (2b) 

 

A complete spiral must cover all pixel points of a given region 

in the digital image. The distance between two successive 

turnings of the spiral is given by 2a . This distance should 

be equal to 1 pixel in the digital image to make the spiral 

complete. Thus, the spiral constant a must not be larger 

than 2/1 . Figure 2 demonstrates the spiral sequences with 

varying constant values of a in the digital images. As seen in 

Figure 2(a), the spiral sequence does not cover the full region 

of a given spiral radius when the constant is set at 0.5. Some 

pixel points in the image will never be traversed. In Figure 

2(b), the region is complete, and no empty space is found 

when the constant is set to a value less than 2/1 . 

The simplified algorithm for generating the spiral sequence 

in a digital image is listed as Algorithm I below. Given the 

current point number p in the spiral sequence, the polar angle 

of the subsequent spiral point p+1 is initially set 

to ))(/(1 pa  since a 2 circle of radius ),( pr i.e. )( pa  , 

containing the current point p has )(2 pr  points on the 

circle. A binary search is then applied to iteratively update the 

increment of the polar angle )1( p  from )( p  until the 

consecutive points p and p+1 are 8-connected. 

Algorithm I: Creation of spiral sequence with the spiral 

center at (0, 0)  

Let
maxp  be the maximum point number of the spiral 

sequence. For a predetermined spiral size of radius maxr , it is 

given by 
maxp = Max{ p | })( maxrpr  . 

Let 0)0(),0,0())0(),0((  yx , and 2/1a  

For p = 0, 1, 2, …,
1max p
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 EndDo 

Next p 

Once the digital spiral sequence is created, the geometric 

features of a point p on the spiral are given by the pixel 

location ))(),(( pypx , the distance )( pd  with respect to the 

spiral center, and the direction angle )(0 p  measured in 

degrees and restricted in the range between o0 and o360 , i.e. 

  2/122 ])()([)( pypxpd   

   2/360]2mod)([)( 00  pp  

where mod is the modulo operation. The spiral 

Look-Up-Table is thus constructed by the point 

coordinates ))(),(( pypx , distance )( pd  and rotation angle 

)(0 p  with the point number p as the index. Table 1 shows 

the sketch of the spiral LUT. Note that the spiral point number 

p also implicitly indicates the distance or neighborhood from 

the spiral center. That is, a smaller point number p is closer to 

the spiral center. With the spiral LUT, the computation of 

distances and direction angles, and the sorting of distances 

can be eliminated in the search of neighboring points. 

B. Preprocessing with thresholding and thinning 

As seen in Figure 1(a) and (b), the crack intensities are 

darker than theirs surroundings. Figure 1(e) and (f) present 

the corresponding gray-level histograms of the defective 

metal image 1(a), and the defect-free image 1(b), 

respectively. The two gray-level histograms of the metal 

images with random textures are unimodal. There is no such a 

threshold that can clearly segment the crack from the 

background texture. However, the threshold value should be 

selected so that most of the pixels associated with the crack 

are preserved, while the noisy background pixels are removed 

as many as possible. In order to automatically find the 

adaptive threshold for each individual test image, we initially 

use the Otsu’s minimum within-group variance [Otsu, 1979] 

to find the preliminary threshold value T. The resulting value 

from the Otsu’s method is generally in favor of a large portion 

of dark regions. We thus reduce the threshold value, and take 

0.6 T as the final threshold value for the binary 

segmentation. For a given type of test surfaces, the reduction 

coefficient can be empirically determined and is fixed in the 

inspection process.  

  
(a) (b) 

 

Figure 2. The spirals in digital images: (a) a = 0.5; (b) a = 

0.1. 
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For the demonstration images in Figure 1(a) and (b), the 

selected threshold values T and 0.6 T are displayed in the 

histograms in Figure 1(e) and (f). The resulting binary images 

with the threshold values T and 0.6 T are shown in Figure 3, 

where 3(a) and (b) are the same defective and defect-free test 

images as those in Figure 1(a) and (b), and 3(c) and (d) are the 

respective binary images with the Otsu’s threshold T, and 3(e) 

and (f) are the resulting binary images with the reduced 

threshold 0.6 T . The thresholding result of the defective 

metal image reveals that the Otsu’s threshold value cannot 

segment the crack, as seen in Figure 3(c). The reduced 

threshold 0.6 T can well segment the dark crack, as shown in 

Figure 3(e). The thresholding process also generates irregular 

line- and curve-shaped dark objects, along with random noisy 

points, from the background textures for both defective and 

defect-free metal images. 

For the resulting binary image with the reduced threshold 

value 0.6 T , the morphological thinning operation 

[Gonzalez and Woods, 2008] is further applied to make the 

black objects one-pixel thickness. Figure 3(g) and (h) show 

the thinning results of the binary images in Figure 3(e) and (f), 

respectively. The crack in the thinned image is visually 

observable in the highly noisy background. Using the 

thresholding and thinning as preprocessing tools for the 

randomly textured image is due to their simplicity and 

computational efficiency. Although random noisy objects are 

present in the resulting thinned image, the crack is also well 

preserved. The proposed spiral search can effectively connect 

the pixels of a crack from the noisy background. It is robust 

enough to link continuous or discontinuous crack lines, and is 

not sensitive to the preprocessing results. 

C. Spiral search for pixel linkage 

Let ),( yxt  be the resulting thinned image, where 

),( yxt =1 if ),( yx  is a black object pixel. It is otherwise set to 

zero for the background. Since the neighboring pixel points of 

a crack may not be connected in the thinned image, a spiral of 

a small radius maxr  is used to search for the closest neighbor. 

The radius maxr defines the maximum distance between two 

discontinuous points of a crack. In this study, maxr  is set at 4 

pixels. 

Multiple line segments of different orientations may be 

present in the thinned image ),( yxt . The spiral search is 

applied to the end point of a currently connected line segment, 

i.e. the end point is taken as the spiral center. If the first 

encountered point is 8-connected to the end point of the line 

segment, it is then linked to the line segment. If no 

8-connected points can be found, it then finds a neighboring 

point that is closest to the end point and shows a consistent 

orientation of the current line segment. 

Let },...,2,1,0),,({)( eiyxlL l

i

l

i

l

i  p  be the line 

segment labeled by l that contains a collection of connected 

pixel points sl

i 'p . )y,x( l

e

l

e

l

e p  is the end point of the line 

segment )(lL . To find the subsequent neighboring point of the 

line segment )(lL , its end point ),( l

e

l

e yx  is taken as the spiral 

center, and the spiral search proceeds. Denote by 
l

e  the 

direction angle towards the end of the line segment )(lL . It is 

given by 





K

k

l

ke

l

e

K 1

1
  

where l

i  is the direction angle of point l

ip , and is obtained 

from the LUT in the spiral search; K is the support length. The 

support K is currently set to 4 in this study, i.e. the last four 

points of a line segment is used to calculate the mean direction 

angle. 

In the spiral search, the minimum number of p in the spiral 

sequence (i.e. the minimum distance from the spiral center) 

with an acceptable angular difference is selected and is linked 

to the current segment )(lL . That is, 

 

}1))(),((&|)({minarg 0*  pyypxxtTpdp l

e

l

ep
p

  

where |)(| 00 p
l

ep   ; )(0 p  is the rotation angle of 

spiral point p and is obtained from the spiral LUT. 
T  is the 

angular tolerance threshold. In this study, it is given by 030 . 

Note that the sorting for the minimum distance is not required 

with the spiral search. The point *p  with coordinates 

))(),(( ** pyypxx l

e

l

e   is then assigned to the line 

segment )(lL . It is the new end point of the line segment. 

Record also )( *0 p as the direction angle of the new 

connected point. The spiral search then repeats to link the 

  
(a) (b) 

  

(c) (d) 

  

(e) (f) 

  
(g) (h) 

 

Figure 3. Preprocessing results of the metal surfaces: (a), 

(b) defective and defect-free images; (c), (d) respective 

binary thresholding results from the Otsu’s threshold T; 

(e), (f) respective binary images from 0.6T; (g), (h) 

respective results of morphological thinning. 



                                                                                

International Journal of Engineering and Technical Research (IJETR) 

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-1, January 2016 

                                                                                                   5                                                                     www.erpublication.org 

 

unassigned pixel points in the thinned image. Figure 4 shows 

the sketch of dark-pixels linkage, where
ip is the neighboring 

pixel of the end point ),( l

e

l

e yx  and shows better consistency 

with the direction of the line segment 

The simplified algorithm of the spiral search process is 

presented by the pseudo-code in Algorithm II below. 

Algorithm II: Spiral search for pixel linkage 

Let )(lL  be the line segment, and ),( l

e

l

e yx  the current end 

point of the line segment. 

Let ),( yx cc = ),( l

e

l

e yx ; 



K

k

l

ke

l

e

K 1

1
  

For p = 1, 2, …, maxp  

 x =
)( pxcx   

 y =
)( pyc y   

 If 
),( yxt
=1 and ),(&),( yx ccyx are 8-connected, Or 

   ),( yxt =1 and 
000 30|)(|  p

l

ep 
, 

 Then 

   
),()()( yxlLlL 
 

   1ee  

      
),( l

e

l

e yx
=

),( yx
, and 

)(0 pl

e  
 

 EndIf 

Next p 

 

Repeat the spiral search above with the new spiral 

center ),( l

e

l

e yx . If no pixel point can be connected in the spiral 

region of radius 
maxr , terminate the linkage of line segment l. 

Connect the unassigned pixel points in the thinned image with 

the new line segment labeled by l+1, and repeat the spiral 

search above. Note that ))(),(( pypx  and )(0 p  in the 

algorithm are directly retrieved from the spiral LUT. The first 

encountered p that meets the requirements gives the minimum 

distance to the end point of the line segment. Figure 5(a) and 

(b) presents, respectively, the results of pixel linkage for the 

defective and defect-free metal images in Figure 3(g) and (h), 

where individual line segments are displayed with different 

colors, and the line segments with small lengths (less than 20 

pixels) are discarded from further consideration. 

D. Connection of line segments 

In the dark-pixel linkage process above, a discontinuous 

crack may result in a few disconnected line segments. They 

should be connected to present the full length of the crack. As 

seen in the thinned images of the metal surfaces in Figure 3(g) 

and (h), the length of a crack is longer than the random dark 

objects in the background. Therefore, the line segment with 

the maximum length after the pixel linkage process is the most 

suspicious fragment of a crack. That is, 

 

|})({|maxarg* lLl
l

  

where |)(| lL  denotes the length of line segment )(lL . 

The line segments nearby are connected to )( *lL if they are 

within a given neighborhood distance and show consistent 

directions. Since a linked line segment is generally not a 

straight line, its direction is given by the mode, instead of the 

mean, of the angles for all pixels in the line segment. 

Let },...,2,1,0),,({)( eiyxlL l

i

l

i

l

i  p  and l

i  the rotation angle 

of pixel point l

ip . The rotation angle is between 00  and 0360 . 

The full range of angles is divided into 12 intervals (i.e. a 

resolution of 030 ). The angular mode of line segment )(lL  is 

thus given by 

},...,2,1,0],130/[{)( 0

mod eiIntModel l

ie    

A small connection window of size wh   with direction 

angle )( *

mod le  is placed at either end of the main line 

segment )( *lL . The connection window is currently given 

by 1020  pixels in this study. Figure 6 depicts the placement 

of the connection window wh   at the two end points of 

the line segment )( *lL . If there is any line segment )(kL within 

the connection window and the angular difference
emod with 

|)()(| mod

*

modmod kl eee    

is within the angular resolution, i.e. 030 , line segment )(kL is 

then connected to )( *lL . The maximum line segment )( *lL is 

then expanded, and the connection process is repeated until 

no connection of line segments is possible. If the final length 

of the connected line segment is larger than a length threshold, 

a crack is detected. Otherwise, the surface is defect-free. 

Figure 5(c) is the final connected line segments of a crack 

from Figure 5(a). Figure 5(e) illustrates the detection result by 

superimposing the connected line segments of the crack on 

the original metal surface in Figure 1(a). Figure 5(d) shows 

that no crack is detected from the defect-free metal surface in 

Figure 1(b). Algorithm III presents the procedure of 

line-segment connection. 

 
 

Figure 4. Spiral search of a coherent neighboring point from 

the end point of a line segment. 

 
 

Figure 6. Sketch of the connection of line segments and 

the placement of the connection window wh  . 
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Figure 5. Pixel linkage and line-segment connection: (a), (b) 

respective pixel-linkage results of Figure 3(g) and (h); (c), (d) 

respective line-segment connection results of (a) and (b); (e), 

(f) superimposing the detected line segments of cracks on the 

original images. 

 

Algorithm III: Connection of line segments 

Let |})({|maxarg* lLl
l

 . ),(
**

00

ll yx  and ),(
** l

e

l

e yx  are the two 

end points of )( *lL . 

Initially, )( *

mod lo

e = )( *

mod le

e = )( *

mod le  

1. Extend the window wh   with orientation )( *

mod lo

e  

from end point ),(
**

00

ll yx . 

If  )(kL wh  , 

 and )30..(1|)()(| 0

mod

*

modmod eikl e

o

ee   , 

then )()()( ** kLlLlL   

 ),(
**

00

ll yx = ),( 00

kk yx  and )( *

mod lo

e = )(mod ke  

2. Extend the window wh   with orientation )( *

mod le

e  

from end point ),(
** l

e

l

e yx . 

If  )(kL wh  , 

 and )30..(1|)()(| 0

mod

*

modmod eikl e

e

ee   , 

then )()()( ** kLlLlL   

 ),(
** l

e

l

e yx = ),( k

e

k

e yx  and )( *

mod le

e = )(mod ke  

Repeat the steps above until no connection is possible. 

III. EXPERIMENTAL RESULTS 

If you are using Word, use either the Microsoft Equation 

Editor or the MathType add-on (http://www.mathtype.com) 

for equations in your paper (Insert | Object | Create New | 

Microsoft Equation or MathType Equation). “Float over text” 

should not be selected.  

In this section, we present the performance of the proposed 

crack detection method. All algorithms were encoded in the 

C# programming language and implemented on a personal 

computer equipped with an Intel i7-3770 3.4GHz processor. 

The images used in the experiment were 240320  pixels 

wide with 8-bit gray levels. The computation time from the 

binary thresholding to the final line-segment connection for a 

test image is only 0.168 seconds on average. In the 

experiment, the parameter values were fixed for all test 

images. The maximum spiral radius 
maxr  is set to 4 pixels in 

the pixel-linkage process, and the connection window wh   

is set to 1020  pixels in the line-segment connection process. 

There are a total of 120 test images used in the experiment, 

of which 48 are defect-free and 72 are defective. The 

defective surfaces contain cracks of varying lengths and 

directions at different positions in the images. Figure 

7(a1)-(a4) shows 4 images of the 72 defective surfaces, and 

Figure 8(a1)-(a4) demonstrates 4 of the 48 defect-free 

surfaces used in the experiment. Note that the cracks are 

different in length and locations, and are irregular and 

discontinuous. The defect-free samples present highly 

random patterns in the surfaces. They results in random black, 

short, and irregular line segments in the thinned images. 

Figure 7(b1)-(b4) presents the detection results by 

superimposing the detected cracks on the original textured 

images for the 4 defective test samples in Figure 7(a1)-(a4), 

respectively. Figure 8(b1)-(b4) are the detection results of the 

defect-free samples in Figure 8(a1)-(a4), where the resulting 

black images indicate no pixels of cracks are detected. With 

the given parameter settings, the proposed method claims all 

48 defect-free test images contain no cracks, and all 72 

defective test images contain cracks. The recognition rate of 

the proposed method is 100% based on the 120 test samples 

used in the experiment. 

The proposed method can also be applied to crack 

detection in non-textured concrete surfaces. Figure 9(a1) and 

(b1) shows two concrete surface images that contain thin 

cracks on the surfaces. Since cracks show high-contrast 

intensities from their background surfaces, the binary 

thresholding value is set at T9.0 , where T is the threshold 

value obtained from the Otsu’s method. All the remaining 

parameter settings are the same as those used for randomly 

textured metal surfaces in the previous experiment. Figure 

9(a2) and (b2) presents the binary thresholding results, and 

Figure 9(a3) and (b3) shows the thinned images. Figure 9(a4) 

and (b4) illustrates the final results by superimposing the 

detected cracks on the concrete surfaces. The shapes and 

locations of the cracks are well detected. 

 

IV. CONCLUSIONS 

In this paper, we have proposed a machine vision scheme 

for crack detection in randomly textured metal surfaces. It 

uses the binary thresholding and morphological thinning as 

the preprocessing to obtain single pixel thickness of dark 
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objects. The spiral search is then performed on the thinned 

image to link object pixels into line segments. The linkage of 

neighboring pixel points is based on the distance and direction 

angle of the object points. The distance and angle of the 

neighboring points can be retrieved from the spiral 

look-up-table. The first encountered object point gives the 

closest neighboring point. No computation and sorting of 

distances are required, and thus the spiral search for object 

point linkage is very efficient. The individual line segments 

are further connected based on their neighboring distance and 

the mode of direction angles to find the complete shape of the 

crack. 

Experimental results have revealed that the proposed 

method can detect thin cracks of varying lengths and 

directions in randomly textured metal surfaces. The random 

dark objects from the textured background do not affect the 

detection of true cracks. No false alarms are generated based 

on the test images used in the experiment. It is also 

demonstrated that the proposed method can be used to detect 

cracks in non-textured images, such as concrete surfaces. 

In the proposed crack detection algorithms, the size of the 

search spiral 
maxr  and the size of the connection window 

wh   are empirically determined by analyzing the possible 

disconnected distance of a crack in the metal surface. It may 

be required to adjust the parameter values for different 

material surfaces. It is worth further investigation to set the 

parameter values automatically and adaptively. 
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