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Abstract— The aim of this paper is to synthesize and 

implement an algorithm to compute square root efficiently and 

cost effectively. Square root is a computation required in many 

mathematical problems required in computer multimedia 

communication   and in many space related data processing.  So, 

there is a requirement to develop this operation efficiently. 

Hence, in this paper a new type of algorithm is used to design a 

core for finding square root. The core implemented in this paper 

uses a modified non restoring division algorithms to find square 

root. Three types of structures have been developed namely: 

basic combinational, iterative and pipeline. Basic combinatorial 

is simple implementation of non-restoring division algorithm, it 

is nothing but single stage of pipelined architecture. This 

architecture can be used when cost is the major factor and speed 

can be compromised. Iterative architecture is hardware 

efficient cost effective architecture where single hardware unit 

is used iteratively for a computation. Pipelined architecture is 

the fastest architecture to be implemented in this paper. It uses 

various stages for computation i.e. parallel execution is 

performed and hence speeding up the execution time and 

process. Pipelined architecture can be used in real time 

processing system where speed is the major factor. These three 

structures are developed to compare various parameters like 

speed, cost, reliability and distinguish them for various 

application suited by them. The core is developed for any FPGA 

processor and is simulated and debugged using XILINX ISE 

14.1. The architecture is implemented onto VIRTEX family and 

debugged on Spartan 3 XC3S400TQ144. 

 

Index Terms—Combinatorial, FPGA, Iterative, Pipelined, 

Spartan, Virtex  

I. INTRODUCTION 

Square root is an operation required by system graphics and 

scientific computation applications such as math 

coprocessors, DSP algorithms, data processing and control 

[1]. Hence, it is an important computation that need to be 

enhanced. In 1996, Lu and Chi [1] have proposed a „new 

non-restoring square root algorithm‟ for VLSI 

implementation, which is better than the existing VLSI 
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algorithms for computing square root. In many VLSI real 

time image processing applications, it is high prioritized 

requirement to provide the computation of square root of a 

binary coded number with low power dissipation and fast 

computation (low delay propagation). Square root calculation 

is one of the most useful and vital operations in computer 

graphics and scientific calculation applications, such as 

digital signal processing (DSP) algorithms, math 

coprocessor, data processing and control, and even 

multimedia applications [1-6]. It is a classical problem in 

computational number theory, which is oftenly encountered 

and which is a hard task to get an exact result [7-8]. 

The paper is divided as follows: Section II describes the 

algorithm. Section III presents the implemented 

architectures. Section IV explains the results and analysis, 

and in the results a detailed comparison between the spartan 

core and Virtex core is presented. Finally, conclusions is 

given.  

II. NON RESTORING ALGORITHM 

 

The focus of the previous restoring and non-restoring 

algorithms is on each bit of the square root with each 

iteration. In this section, non-restoring square root algorithm 

has been described as in [1]. Each operation consists of 

addition or subtraction based on the sign of the result of 

previous operation. The partial remainder generated in each 

iteration is used in the next iteration even it is negative [1]. At 

the final iteration, if the partial remainder is not negative, it 

becomes the final precise remainder.  

 

 
Radical: ‘D’ of ‘2n bits. Square root: ‘Q’ of ‘n’ bits: 
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*Note that qk has ‘n-k’ bits  

 

 

For k = n-2 downto 0 do 
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End 

Remainder R = r0 

 

 

At each iteration, qk (the square root of d2k), is computed. 

Since d2k = d2(k+1)D2k+1D2k, that is D2k+1D2k is attached to 

d2(k+1) to form d2k, it can be inferred that D2k+1D2k must be 

used to get qk. That explains the fact the algorithm attaches 

D2k+1D2k to r’k+1 to form r’k in order to get qk. The remainder 

at each iteration, called rk, has „n-k+1‟ bits, one more bit than 

qk [1]: rk = R nRn-1Rn-2 … Rk, But the algorithm uses an 

estimated remainder, called r’k, that has „n-k+2‟ bits, the 

MSB is the sign bit, which decides the value of Qk, and it can 

be demonstrated that only the „n-k+1‟ least significant bits of 

r’k are used to get the next estimated remainder r’ k-1. Also, in 

order to get the real remainder R = r0, only the „n+1‟ LSBs of 

r‟0 are needed (the MSB determines Q 0). It lessens the gate 

count, since a register of only „n-k+1‟ bits is needed for r‟k. 

 

III. ARCHITECTURES 

 

As mentioned in abstract three types of architectures have 

been implemented which will be described in this section. 

 

A. Pipelined 

To implement this architecture we need to unfold the 

algorithm explained in section II. Therefore „n‟ stages with 

„n‟ adders/subtractors will appear. By observing the first 

iteration, a reduction is obtained: 

 

R’n-1  D2n-1D2n-2 – 01  
Qn-1    1, if r’n-1  0 
Qn-1   0, if r’n-1 < 0 
 
 

There is no need to perform the first subtraction and wait 

one cycle, if the result from the first iteration can be 

obtained directly from the first 2 MSBs of D. So the first 

stage can be embedded into the second stage, and there will 

be „n-1‟ pipeline stages. 

 

This architecture is depicted in Figure 1. The computation 

of the remainder is not considered, although the core 

computes it if the user wants. Note that the dotted rectangles 

indicate the registers that would have appeared if the 

reduction of the first stage hadn‟t been performed. Such 

architecture can obtain a new square root each cycle. The 

initial latency is „n‟ cycles. 

 

 

 

 

 
 

Figure 1: Pipelined architecture 

 

 

The longest path delay occurs in the last stage, because the 

adder/substractor increases in size as stages advance. A 

further improvement can be made if the last stages are 

pipelined, and the initial ones merged. 

 

B. Combinatorial Architecture 

 

This architecture is implemented because some non-real 

time applications need it, and also in order to establish a 

comparison with the core that does have a fully-combinatorial 

architecture. The architecture is very simple: It is the 

fully-pipelined architecture without the pipelining registers. 

It only has one register at the input and one at the output. 
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Figure 2: Combinatorial Architecture 

C. Iterative Architecture 

The size of the elements (registers, adder/subtractor) will be 

the size of the last stage of the pipelined architecture: 

Register R „n+1‟ bits Register Q „n‟ bits Adder / subtractor 

„n+2‟ bits. 

Since all iterations are embedded in one stage, the reduction 

of Section III A cannot be used. 

 

But a simplification for this case exists: 

 

In the adder/subtractor: the 2 LSBs performs either „xy-01‟ 

or „xy+11‟, „xy‟ is the pair of D bits used at each step. The 

operation yields: „cba‟. The truth table is shown: 

 

cba = xy + 11 cba = xy - 01 

xy cba xy cba 

00 011 00 111 

01 100 01 000 

00 101 00 001 

01 110 01 010 

 

„C‟: carry-in for the next stage of the adder/subtractor „ba‟: 

result of the operation. 

 

„Ba‟ depends only on „xy‟, but „c‟ depends on the type of 

operation. Luckily, a conventional adder/substractor with 

carry-in (e.g. the lpm_add_sub megafuntion) treats the 

carry-in as positive logic when adding, and as negative 

logic when subtracting [3] (this is done to reduce gates 

usage). So, for subtraction, we have to invert „c‟ to assure 

the proper working of the adder/subtractor. The new truth 

table is:  

 

cba = xy + 11 cba = xy - 01 

xy cba xy cba 

00 011 00 011 

01 100 01 100 

00 101 00 101 

01 110 01 110 

 

Now, „c‟ and „ba‟ depends only on „xy‟: 

c  x  y  b  x  y  a  y 

This reduces the width of the adder/subtractor by 2 bits. The 

result „ba‟ is obtained in parallel and the carry-in comes 

from just an OR gate. So the new adder/subtractor uses „n‟ 

bits and has carry-in. Also, note that the MSB of the second 

operator of the adder/subtractor is „0‟ as in the pipelined 

case. Figure 3 depicts this architecture. 

 
 

    Figure 3: Iterative Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

       

    Figure 4: FSM for iterative architecture 

 

Finite state machine of iterative architecture is depicted in 

figure 4. This FSM controls the iterative architecture. The 

process start when s = 1.After „n‟ clock cycles, the result is 

obtained in register Q, done = 1, and a new process can be 

started.  

IV. RESULTS 

The architecture were synthesized using XILINX ISE 

v14.1 successfully. After synthesizing the core were 

implemented on FPGA device XC3S400-TQ144 (Xilinx 

Spartan-3 family) with speed grade -5. The core presented 

does not compute the remainder, since it is rarely used. 

Figure 5 depicts the core with all its options. Table 1 

establishes a comparison between this core and the 

ALTERA core. 

Results are shown only for a specific device (Spartan 3) 

because of large results data with just one device and these 

results are enough to demonstrate the benefits of the core 

implemented. 



FPGA Implementation of modified non-restoring square root core 

                                                                                                 205                                                                     www.erpublication.org 

 

 

Figure 5: Parameter comparison graph for Spartan 

 

 

Figure 5: Parameter comparison graph for Virtex 

 

 

 



 

                                  International Journal of Engineering and Technical Research (IJETR) 

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015   

                                                                                               206                                                         www.erpublication.org 

 

 

 

 

 

 

 

 

Result analysis: 

 From the graphs shown in the figure 5 and 6 we can infer 

that latency is more in combinatorial. But in pipeline the 

latency till 16 bits are low than iterative. After 16 bits 

iterative and pipeline latency time crossover: i.e. for large 

input bits latency increases in pipeline. Hence efficiency in 

pipeline architecture is the highest. Maximum frequency 

operable is highest in pipelined architecture. 

 

Area Comparison: 

 As shown in figure 7 and 8 area covered by all three 

architecture can be seen. Plan Ahead tool of XILINX was 

used to generate area and compare them. We can infer from 

figure 7 and 8 that pipeline architecture uses more area and 

iterative uses the least area. 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

The core implemented achieves high speed at minimum 

cost since it only uses only an adder/subtractor unit to 

perform the operations. The architecture is very flexible, so 

that the user can choose the best architecture for his 

application. The efficiency of this core can be observed from 

graph and table. 

The results are better in terms of speed and resource effort 

than the earlier implementation. An improvement i.e. 

simplification for the iterative architecture can be applied to 

each stage of the pipelined architecture. 

Figure 7: Area comparison of all three architecture for SPARTAN 3 

Figure 7: Area comparison of all three architecture for VIRTEX 4 
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