

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 202 www.erpublication.org



Abstract— The aim of this paper is to synthesize and

implement an algorithm to compute square root efficiently and

cost effectively. Square root is a computation required in many

mathematical problems required in computer multimedia

communication and in many space related data processing. So,

there is a requirement to develop this operation efficiently.

Hence, in this paper a new type of algorithm is used to design a

core for finding square root. The core implemented in this paper

uses a modified non restoring division algorithms to find square

root. Three types of structures have been developed namely:

basic combinational, iterative and pipeline. Basic combinatorial

is simple implementation of non-restoring division algorithm, it

is nothing but single stage of pipelined architecture. This

architecture can be used when cost is the major factor and speed

can be compromised. Iterative architecture is hardware

efficient cost effective architecture where single hardware unit

is used iteratively for a computation. Pipelined architecture is

the fastest architecture to be implemented in this paper. It uses

various stages for computation i.e. parallel execution is

performed and hence speeding up the execution time and

process. Pipelined architecture can be used in real time

processing system where speed is the major factor. These three

structures are developed to compare various parameters like

speed, cost, reliability and distinguish them for various

application suited by them. The core is developed for any FPGA

processor and is simulated and debugged using XILINX ISE

14.1. The architecture is implemented onto VIRTEX family and

debugged on Spartan 3 XC3S400TQ144.

Index Terms—Combinatorial, FPGA, Iterative, Pipelined,

Spartan, Virtex

I. INTRODUCTION

Square root is an operation required by system graphics and

scientific computation applications such as math

coprocessors, DSP algorithms, data processing and control

[1]. Hence, it is an important computation that need to be

enhanced. In 1996, Lu and Chi [1] have proposed a „new

non-restoring square root algorithm‟ for VLSI

implementation, which is better than the existing VLSI

Manuscript received April 15, 2015.

ShabirAhmed B J, Student (M.Tech) Digital Electronics and

Communication systems, Malnad College of Engineering, Hassan,

Karnataka, India, +91-9738417860.

Narendra K, Student (M.Tech) Digital Electronics and Communication

systems, Malnad College of Engineering, Hassan, Karnataka, India,

+91-9738543811.

Swaroop Kumar K, Student (M.Tech) Digital Electronics and

Communication systems, Malnad College of Engineering, Hassan,

Karnataka, India, +91-7411379265.

Asha G H, Associate Professor, Dept. of Electronics and

communication, Malnad College of Engineering, Hassan, Karnataka, India,

+91-9448033837.

algorithms for computing square root. In many VLSI real

time image processing applications, it is high prioritized

requirement to provide the computation of square root of a

binary coded number with low power dissipation and fast

computation (low delay propagation). Square root calculation

is one of the most useful and vital operations in computer

graphics and scientific calculation applications, such as

digital signal processing (DSP) algorithms, math

coprocessor, data processing and control, and even

multimedia applications [1-6]. It is a classical problem in

computational number theory, which is oftenly encountered

and which is a hard task to get an exact result [7-8].

The paper is divided as follows: Section II describes the

algorithm. Section III presents the implemented

architectures. Section IV explains the results and analysis,

and in the results a detailed comparison between the spartan

core and Virtex core is presented. Finally, conclusions is

given.

II. NON RESTORING ALGORITHM

The focus of the previous restoring and non-restoring

algorithms is on each bit of the square root with each

iteration. In this section, non-restoring square root algorithm

has been described as in [1]. Each operation consists of

addition or subtraction based on the sign of the result of

previous operation. The partial remainder generated in each

iteration is used in the next iteration even it is negative [1]. At

the final iteration, if the partial remainder is not negative, it

becomes the final precise remainder.

Radical: ‘D’ of ‘2n bits. Square root: ‘Q’ of ‘n’ bits:

D:

D
2n-1

D
2n-2

D
2n-3

D
2n-4 ...

D
1

D
0

Q:

Q
n-1

Q
n-2 … Q0

*Note that qk has ‘n-k’ bits

For k = n-2 downto 0 do

FPGA Implementation of modified non-restoring

square root core

ShabirAhmed B J, Narendra K, Swaroop Kumar K, Asha G H

FPGA Implementation of modified non-restoring square root core

 203 www.erpublication.org

End

Remainder R = r0

At each iteration, qk (the square root of d2k), is computed.

Since d2k = d2(k+1)D2k+1D2k, that is D2k+1D2k is attached to

d2(k+1) to form d2k, it can be inferred that D2k+1D2k must be

used to get qk. That explains the fact the algorithm attaches

D2k+1D2k to r’k+1 to form r’k in order to get qk. The remainder

at each iteration, called rk, has „n-k+1‟ bits, one more bit than

qk [1]: rk = R nRn-1Rn-2 … Rk, But the algorithm uses an

estimated remainder, called r’k, that has „n-k+2‟ bits, the

MSB is the sign bit, which decides the value of Qk, and it can

be demonstrated that only the „n-k+1‟ least significant bits of

r’k are used to get the next estimated remainder r’ k-1. Also, in

order to get the real remainder R = r0, only the „n+1‟ LSBs of

r‟0 are needed (the MSB determines Q 0). It lessens the gate

count, since a register of only „n-k+1‟ bits is needed for r‟k.

III. ARCHITECTURES

As mentioned in abstract three types of architectures have

been implemented which will be described in this section.

A. Pipelined

To implement this architecture we need to unfold the

algorithm explained in section II. Therefore „n‟ stages with

„n‟ adders/subtractors will appear. By observing the first

iteration, a reduction is obtained:

R’n-1 D2n-1D2n-2 – 01
Qn-1  1, if r’n-1  0
Qn-1  0, if r’n-1 < 0

There is no need to perform the first subtraction and wait

one cycle, if the result from the first iteration can be

obtained directly from the first 2 MSBs of D. So the first

stage can be embedded into the second stage, and there will

be „n-1‟ pipeline stages.

This architecture is depicted in Figure 1. The computation

of the remainder is not considered, although the core

computes it if the user wants. Note that the dotted rectangles

indicate the registers that would have appeared if the

reduction of the first stage hadn‟t been performed. Such

architecture can obtain a new square root each cycle. The

initial latency is „n‟ cycles.

Figure 1: Pipelined architecture

The longest path delay occurs in the last stage, because the

adder/substractor increases in size as stages advance. A

further improvement can be made if the last stages are

pipelined, and the initial ones merged.

B. Combinatorial Architecture

This architecture is implemented because some non-real

time applications need it, and also in order to establish a

comparison with the core that does have a fully-combinatorial

architecture. The architecture is very simple: It is the

fully-pipelined architecture without the pipelining registers.

It only has one register at the input and one at the output.

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 204 www.erpublication.org

Figure 2: Combinatorial Architecture

C. Iterative Architecture

The size of the elements (registers, adder/subtractor) will be

the size of the last stage of the pipelined architecture:

Register R „n+1‟ bits Register Q „n‟ bits Adder / subtractor

„n+2‟ bits.

Since all iterations are embedded in one stage, the reduction

of Section III A cannot be used.

But a simplification for this case exists:

In the adder/subtractor: the 2 LSBs performs either „xy-01‟

or „xy+11‟, „xy‟ is the pair of D bits used at each step. The

operation yields: „cba‟. The truth table is shown:

cba = xy + 11 cba = xy - 01

xy cba xy cba

00 011 00 111

01 100 01 000

00 101 00 001

01 110 01 010

„C‟: carry-in for the next stage of the adder/subtractor „ba‟:

result of the operation.

„Ba‟ depends only on „xy‟, but „c‟ depends on the type of

operation. Luckily, a conventional adder/substractor with

carry-in (e.g. the lpm_add_sub megafuntion) treats the

carry-in as positive logic when adding, and as negative

logic when subtracting [3] (this is done to reduce gates

usage). So, for subtraction, we have to invert „c‟ to assure

the proper working of the adder/subtractor. The new truth

table is:

cba = xy + 11 cba = xy - 01

xy cba xy cba

00 011 00 011

01 100 01 100

00 101 00 101

01 110 01 110

Now, „c‟ and „ba‟ depends only on „xy‟:

c  x  y b  x  y a  y

This reduces the width of the adder/subtractor by 2 bits. The

result „ba‟ is obtained in parallel and the carry-in comes

from just an OR gate. So the new adder/subtractor uses „n‟

bits and has carry-in. Also, note that the MSB of the second

operator of the adder/subtractor is „0‟ as in the pipelined

case. Figure 3 depicts this architecture.

 Figure 3: Iterative Architecture

 Figure 4: FSM for iterative architecture

Finite state machine of iterative architecture is depicted in

figure 4. This FSM controls the iterative architecture. The

process start when s = 1.After „n‟ clock cycles, the result is

obtained in register Q, done = 1, and a new process can be

started.

IV. RESULTS

The architecture were synthesized using XILINX ISE

v14.1 successfully. After synthesizing the core were

implemented on FPGA device XC3S400-TQ144 (Xilinx

Spartan-3 family) with speed grade -5. The core presented

does not compute the remainder, since it is rarely used.

Figure 5 depicts the core with all its options. Table 1

establishes a comparison between this core and the

ALTERA core.

Results are shown only for a specific device (Spartan 3)

because of large results data with just one device and these

results are enough to demonstrate the benefits of the core

implemented.

FPGA Implementation of modified non-restoring square root core

 205 www.erpublication.org

Figure 5: Parameter comparison graph for Spartan

Figure 5: Parameter comparison graph for Virtex

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 206 www.erpublication.org

Result analysis:

 From the graphs shown in the figure 5 and 6 we can infer

that latency is more in combinatorial. But in pipeline the

latency till 16 bits are low than iterative. After 16 bits

iterative and pipeline latency time crossover: i.e. for large

input bits latency increases in pipeline. Hence efficiency in

pipeline architecture is the highest. Maximum frequency

operable is highest in pipelined architecture.

Area Comparison:

 As shown in figure 7 and 8 area covered by all three

architecture can be seen. Plan Ahead tool of XILINX was

used to generate area and compare them. We can infer from

figure 7 and 8 that pipeline architecture uses more area and

iterative uses the least area.

V. CONCLUSION

The core implemented achieves high speed at minimum

cost since it only uses only an adder/subtractor unit to

perform the operations. The architecture is very flexible, so

that the user can choose the best architecture for his

application. The efficiency of this core can be observed from

graph and table.

The results are better in terms of speed and resource effort

than the earlier implementation. An improvement i.e.

simplification for the iterative architecture can be applied to

each stage of the pipelined architecture.

Figure 7: Area comparison of all three architecture for SPARTAN 3

Figure 7: Area comparison of all three architecture for VIRTEX 4

FPGA Implementation of modified non-restoring square root core

 207 www.erpublication.org

REFERENCES

[1] Y. Li and W. Chu, “A New Non-Restoring Square Root Algorithm and

Its VLSI Implementations”, Proc. Of 1996 IEEE International

Conference on Computer Designs: VLSI in Computers and Processors,

Austin, Texas, USA, October 1996, pp538-544..

[2] J. Hennessy and D. Patterson, Computer Architecture, A Quantitative

Approach, Second Edition, Morgan Kaufmann Publishers, Inc., 1996.

[3] G. Knittel, “ A VLSI-Design for Fast Vector Normalization” Comput.

& Graphics, Vol. 19, No. 2, 1995. pp261 - 271.

[4] J. Bannur and A. Varma, “The VLSI Implementation of A Square Root

Algorithm”, Proc. IEEE Symposium on Computer Arithmetic , IEEE

Computer Society Press, Washington D.C., 1985. pp159 - 165.

[5] J. O‟Leary, M. Leeser, J. Hickey, M. Aagaard, “NonRestoring Integer

Square Root: A Case Study in Design by Principled Optimization”,

Proc. 2nd International Conference on Theorem Provers in Circuit

Design (TPCD94) , 1994. pp52 - 71.

[6] K. C. Johnson, “Efficient Square Root Implementation on the 68000”,

ACM Transaction on Mathematical Software , Vol. 13, No. 2, 1987.

pp138 - 151.

[7] H. Kabuo, T. Taniguchi, A. Miyoshi, H. Yamashita, M. Urano, H.

Edamatsu, S. Kuninobu, “Accurate Rounding Scheme for the

Newton-Raphson Method Using Redundant Binary Representation”,

IEEE Transaction on Computers , Vol. 43, No. 1, 1994. pp43 – 51

[8] Brown & Vranesic. Fundamentals of Digital Logic with VHDL

Design, McGraw Hill, 2000

[9] U. Meyer – Baese, Digital Signal Processing with Field Programmable

Gate Arrays: Springer-Verlag Berlin Heidelberg, May 2001

 ShabirAhmed B J, Student (M.Tech) Digital

Electronics and Communication systems, Malnad

College of Engineering, Hassan, Karnataka. India.

+91-9738417860.

.

 Narendra K, Student (M.Tech) Digital

Electronics and Communication systems, Malnad

College of Engineering, Hassan, Karnataka, India,

+91-9738543811.

Swaroop Kumar K, Student (M.Tech) Digital

Electronics and Communication systems, Malnad

College of Engineering, Hassan, Karnataka, India,

+91-7411379265.

Asha G H, Associate Professor, Dept. of Electronics

and communication, Malnad College of Engineering,

Hassan, Karnataka, India, +91-9448033837.

