

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 170 www.erpublication.org

Abstract— an array structure for high speed division

algorithm has been described in this paper. The objective is to

develop the division algorithm first with the basic technique

and later enhance the performance by pipelining the execution

process. For implementation, we consider restoring dividers

(i.e., those that keep the actual residue value at every step).

Three different types of division algorithms are developed

which serve for different applications. The first algorithm is

‘Combinatorial Array Divider’ which uses an array of

processing units consisting of a full adder and a multiplexer. It

is the direct implementation of hand-division method and it

gives the basic understanding of the division process. The

second algorithm is ‘Fully Pipelined Array Divider’ which uses

an array of processing units along with large number of

flip-flops for storing the intermediate results. Pipelining is one

way of improving the overall processing performance. This

reduces the execution time which is very helpful in certain

real-time applications but on the contrary it increases the

hardware, resulting in an increase in the cost and area. The

third algorithm is ‘Iterative Restoring Divider’ which uses just

a couple of shift registers and a control unit. This reduces the

hardware (area and cost) but in turn it takes higher number of

clock cycles to execute. This is preferred in some non-real-time

applications where execution time is of least essence. A

synthesizable model of a divider that can be implemented in

FPGA is developed and the implementation has been

parameterized (i.e. it can be implemented for any size of the

operand).

Index Terms— Combinatorial Array Divider, Fully

Pipelined Array Divider, Integer Divider, Iterative Restoring

Divider, parameterized, Restoring.

I. INTRODUCTION

Division is a complex operation whose VLSI

implementation is generally slower and more area

consuming than the other three basic arithmetic operations

(i.e. addition, subtraction and multiplication). However, with

more complex digital signal processing (DSP) algorithms

being implemented in VLSI, the divider is increasingly

becoming an indispensable VLSI block for digital design [6].

Manuscript received April 12, 2015.
Narendra K, Student (M.Tech) Digital Electronics and Communication

systems, Malnad College of Engineering, Hassan, Karnataka, India,

+91-9738543811.
ShabirAhmed B J, Student (M.Tech) Digital Electronics and

Communication systems, Malnad College of Engineering, Hassan,

Karnataka, India, +91-9738417860.
Swaroop Kumar K, Student (M.Tech) Digital Electronics and

Communication systems, Malnad College of Engineering, Hassan,
Karnataka, India, +91-7411379265.

Asha G H, Associate Professor, Dept. of Electronics and

communication, Malnad College of Engineering, Hassan, Karnataka, India,
+91-9448033837.

Furthermore, the number of clock cycles for integer division

varies depending on the operands‟ values. Every

general-purpose microprocessor of recent design provides a

hardware support for arithmetic division. Also, in digital

signal processors for some applications such as

three-dimensional graphics, there are increasing demands for

high-speed dividers [7]. However, frequently used division

algorithms are based on sequential recurrences producing

one quotient digit per iteration, which causes significant

increase in computation steps and sometimes imposes severe

limitations on system performance.

 Integer division is a critical operation in CPU design, since

the number of clock cycles to complete an integer is usually

very long and unpredictable. The role of division is

becoming more and more critical, owing to the requirement

of signed computer arithmetic, modulus computation, the

calculation of encryption keys, and so on. Pipelining is one

way of improving the overall processing performance of a

processor. This architectural approach allows the

simultaneous execution of several instructions. Pipelining is

transparent to the programmer; it exploits parallelism at the

instruction level by overlapping the execution process of

instructions. It is analogous to an assembly line where

workers perform a specific task and pass the partially

completed product to the next worker [2].
 This paper is organized as follows. Section-II gives the

introduction into some standard integer division algorithms.

Section-III describes the basic implementation of the

division algorithm. Section-IV, V & VI describes the

implementation of Combinatorial Array Divider, Fully

Pipelined Array Divider and Iterative Restoring Divider

respectively. The results and conclusions are presented in

Section- VII and VIII.

II. INTEGER DIVISION

The division is a basic arithmetic operation requiring two

inputs Dividend (A) and Divisor (B) to produces the two

outputs i.e. Quotient (Q) and Remainder (R) such that

 () and under the condition

 . The division is a series of subtractions of the divisor

from the dividend producing the partial remainder values.

 The standard fixed-point algorithm follows a

“paper-and-pencil” technique: in every iteration, it produces

a fixed number of quotient bits. This involves the addition,

multiplication and shift operations. For a proper division,

normally the dividend is greater than the divisor (A > B). If

we consider the dividend to be

n-bits () and the divisor to be m-bits

 () where then the quotient will be

of n-bits () and the remainder will be of

m-bits ().
 Many arrays for division operation have been proposed

and they can be broadly classified into two categories: (i)

restoring and (ii) non-restoring. In restoring division, the

divisor is subtracted from the dividend (or from the previous

Narendra K., ShabirAhmed B.J., Swaroop Kumar K, Asha G.H.

FPGA Implementation of Fixed point Integer

Divider Using Iterative Array Structure

FPGA Implementation of Fixed point Integer Divider Using Iterative Array Structure

 171 www.erpublication.org

remainder); if the remainder is negative, the previous

dividend is restored and the quotient bit is taken as zero.

Otherwise the quotient bit is one and the process is continued

without any change. In non-restoring method, the division

process is carried out without restoring the previous dividend

irrespective of the sign of the result. The organizations of two

types of divisors are quite similar and only the designs of the

basic cells are slightly different. But later on it was proved

that the speed of the two types of arrays is almost equal and

the restoring technique gives a true remainder. In a divider

array the subtraction can be achieved either directly or by

adding 2‟s complement of the divisor.

III. IMPLEMENTATION

Given two unsigned numbers A (n-bits) and B (m-bits), we

wish to design a circuit that produces two outputs Q (n-bits)

and R (m-bits), where Q is the quotient of A/B and R is the

remainder. This can be implemented by shifting the digits in

A to the left, one digit at a time, into a shift register R. After

each shift operation, R is compared with B. If R ≥ B, a 1 is

placed in the appropriate bit position in the quotient and B is

subtracted from R. Otherwise, a 0 bit is placed in the

quotient. For the implementation, we follow the

hand-division method. We grab bits of A one by one and

comparing it with the divisor. If the result is greater or equal

than B, then we subtract B from it. This algorithm is

described using pseudo-code. The notation R||A is used to

represent a 2n-bit shift register formed using R as the

left-most n bits and A as the right-most n bits.

 ;

 for to do

 Left-shift ;

 if then

 ;

 ;

 else

 ;

 end if ;

 end for ;

A. Subtraction of Unsigned Numbers Represented With

n-Bits: T=R-B.

This point deserves special attention as the divider hardware

relies on the result obtained here. We usually determine the

sign of the subtraction by sign-extending R and B so that they

are in 2‟s complement representation with bits. Then,

we do () , where ,

and determine the sign of the subtraction operation.

However, when R and B are unsigned, we can compute

 () without sign-extending B. We then analyse :

(i) If (and is equal to
 , i.e. it is an unsigned number with bits).

(ii) If (here is NOT equal

to)

B. Demonstration of the computation of R-B with n bits:

We have where R and B are

unsigned binary numbers represented by r r r

and respectively. To compute ,

we sign-extend and to bits turning them into two

numbers in 2‟s complement representation. The

sign-extension actually amounts to zero-extending.

Then, r r r and . In 2‟s

complement, we have that: . It

follows that: () . Thus can

be represented in 2‟s complement with bits (as

expected). Let t() and is represented by

 . In unsigned representation,

 .

Equ.1 shows the operation by using: , where

 t() .We let 1 be held by . If then

 (here is represented by the second operator as well

as)

equ.1: Operation t()

Table I: To determine the value of :

Case

(
)

 100…0

 100…1

… …

 111…1

 1000…0

Case-1:

 Since Implies that and hence

 We have

 ∑r

 ∑

 ∑r

 ∑

 Hence,

∑r

 ∑

 The bit sum (considering the operation as

unsigned) of R and K is lower than . Then,

there is no overflow in the bit unsigned sum.

Thus .

 The bit sum (considering the operations as

unsigned) of and is lower than .

Thus, there is no overflow of the bit unsigned

sum. Thus .

Case-2:

 We have

 ∑ r

 ∑

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 172 www.erpublication.org

 ∑r

 ∑

 Hence

∑r

 ∑

 The bit sum (considering the operation as

unsigned) of R and K is greater or equal to

than . Then, there is overflow of the bit

unsigned sum. Thus .

 For the n-bit sum of R and , we have

two cases

If B > 0, then and hence

∑

 ∑

∑

 ∑

If B = 0, then and hence

∑

 ∑

 In both cases, the n-bit sum (considering the

operands as unsigned) of and is

greater or equal to than . So, there is overflow of

the -bit unsigned sum. Thus when .

For the 2‟s complement operation of R-B with bits,

there is no overflow of the subtraction as .

For : The result is a positive number,

thus . Therefore t t t contains in

unsigned representation.

 In conclusion: (i) If , then the bits

 t t t do not contain the result . (ii) If
 , then the bits t t t do represent

 in unsigned representation.

C. Restoring Array Divider For Unsigned Numbers.

Let A and B be two positive integers in unsigned form of

representation. with bits, and

 with bits, with the condition

that We have () , where Q is the

quotient and R is the remainder. In this parallel
implementation, the result of every stage is called the
residue . The Fig. 1 depicts the parallel algorithm with
N stages. For each stage , we have

 : denotes the output of stage which
represents the residue after each stage.

 : denotes the input of stage which holds the
minuend at each stage.

For the next stage, we append the next bit of to . This
becomes (the minuend) r
 . At each stage , the subtraction is
performed. (i) If then , (ii) If
 then
 Table II: Restoring algorithm for division

Stage Computation of

bits

0 1

1

2

2

 3

… … … …

M-1

M

 Fig. 1: Parallel implementation algorithm

Since has bits, the operation requires bits

for both operands. To maintain consistency, we let be

represented with bits. Represents the output of

each stage. For the first stages, requires bits.

H wever r s ste y l r ty’s s e since

 might be the result of a subtraction, we let use M

bits.

 For the stages in between 0 to , is always

transferred onto the next stage. Note that we transfer

with least significant bits. There is no loss of

accuracy here since at most requires bits for

stage . We need with bits since

uses bits.

FPGA Implementation of Fixed point Integer Divider Using Iterative Array Structure

 173 www.erpublication.org

 For the stages in between to N , Starting from
stage , requires bits. We also know that the
residue requires at most bits (maximum value
is). So, starting from stage we need to
transfer bits. As now requires bits, we
need units starting from stage .
 To implement the operation we use a
subtractor. If t e ut and when
 ut . This ut becomes a bit of the
quotient: ut . This quotient Q requires N
bits at the most. Also, the final residue is the result of
the last stage. The maximum theoretical value of the
residue is , thus the residue requires bits
where . Also, note that we should avoid a
division by 0. If B=0, then, in our circuit:
and .

IV. COMBINATIONAL ARRAY DIVIDER

The Fig. 2 shows the hardware of this array divider for
N=8 and M=4. Here the first M=4 stages only require 4

units, while the next stages requires 5 units. This is fully
combinatorial implementation. Each level computes .
It first computes . When , and
when . This is used to
determine whether the next is or . Each
Processing Unit (PU) is used to process , one bit at
a time, and to let a particular bit of either or be
transferred on to the next stage.

V. FULLY PIPELINED ARRAY DIVIDER

Fig. 2: Combinational Array divider block schematic

Fig. 3: Block representation of Fully Pipelined Array

divider

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 174 www.erpublication.org

As shown in Fig. 3 the hardware core of the fully

pipelined array divider with its inputs, outputs, and

parameters. The Fig. 4 shows the internal architecture of

this pipelined array divider for N=8, M=4. Note that the

first M=4 stages only require 4 units, while the next

st ges requ re 5 u ts te t t t e e le put ‘E’ s

distributed across the enable inputs of all flip flops. The

exception is the shift register on the left, which is used to

generate the valid output.

Fig. 4: Schematic of Fully Pipelined Array divider

FPGA Implementation of Fixed point Integer Divider Using Iterative Array Structure

 175 www.erpublication.org

VI. ITERATIVE RESTORING DIVIDER

The Fig. 5&6 shows the iterative hardware architecture

and the state machine. Here, is always held at

register R. The subtractor computes . This

requires bits in the worst case. If
 then . here is the minuend. is
loaded onto register R. Note that only M bits are needed.

If , then . Here only is loaded onto

register R. This is done by just shifting into
register R. Here, R requires M bits since it holds the
residue at every stage. Also, since we always shift
 onto register A, the quotient Q is held at A in the
last iteration.

Fig. 5: State Machine of Iterative Restoring Divider

Fig. 6: Iterative Divider Architecture

VII. RESULT

The described divisor models were implemented in the

FPGA device XC3S400-TQ144 (Xilinx Spartan-3 family)

with speed grade -5 and in in the FPGA device XC4VFX12

-SF363 (Xilinx Virtex-4 family) with speed grade -12. The

development system ISE v 14.1 with default settings was

used. The implementation results – Maximum combinational

path delay (for Combinatorial Array Divider) and Minimum

period, Maximum Frequency, Minimum input arrival time

before clock and Maximum output required time after clock (

for Fully Pipelined Array Divider and Iterative Restoring

Divider) obtained by Synthesize-XST are given in following

tables (Table 3 and Table 4).

Comparison of AREA:

As seen in the Fig. 8 & 9, the amount of area required to

implement on these devices have been compared. These

comparisons are done for the three designs based on the

implementation in the FPGA device XC3S400-TQ144 using

Implementation Design-Analyze Timing/Floor plan Design

(Plan Ahead).

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 176 www.erpublication.org

Table 3: Comparison table of timing analysis for Spartan 3

Table 4: Comparison table of timing analysis for Virtex 4

Device

Family

Divide

nd bits

Divisor

bits

Division

Algorithm

Maximum

combinational

path delay (ns)

Minimum

period (ns)

Maximum

Frequency

(MHz)

Minimum input

arrival time

before clock (ns)

 Maximum

output required

time after clock

(ns)

Spartan-3

2 1

Combinational 7.850 ….. ….. ….. …..

Pipelined ….. 2.321 430.765 2.160 7.735

Iterative ….. 3.451 289.809 3.611 6.441

4 2

Combinational 9.150 ….. ….. ….. …..

Pipelined ….. 3.538 282.622 2.804 10.302

Iterative ….. 4.222 236.860 3.679 6.456

8 4

Combinational 45.999 ….. ….. ….. …..

Pipelined ….. 4.998 200.094 3.238 12.045

Iterative ….. 6.095 164.077 4.578 6.456

16 8

Combinational 127.412 ….. ….. ….. …..

Pipelined ….. 6.399 156.266 5.044 17.465

Iterative ….. 6.418 155.818 4.247 6.544

32 16

Combinational 669.188 ….. ….. ….. …..

Pipelined ….. 9.475 105.541 9.421 28.046

Iterative ….. 8.330 120.053 5.058 6.895

64 32

Combinational 2691.854 ….. ….. ….. …..

Pipelined ….. 11.175 89.484 9.207 48.893

Iterative ….. 10.720 93.284 5.339 7.159

Device

Family

Dividend

bits

Divisor

bits

Division

Algorithm

Maximum

combinational

path delay (ns)

Minimum

period (ns)

Maximum

Frequency

(MHz)

Minimum input

arrival time

before clock (ns)

 Maximum

output

required time

after clock (ns)

Virtex-4

2 1

Combinational 4.871 ….. ….. ….. …..

Pipelined ….. 0.885 1130.199 1.492 4.467

Iterative ….. 1.619 617.608 2.117 3.856

4 2

Combinational 5.586 ….. ….. ….. …..

Pipelined ….. 1.495 668.762 1.843 5.532

Iterative ….. 1.966 508.660 2.142 3.856

8 4

Combinational 22.135 ….. ….. ….. …..

Pipelined ….. 2.219 450.592 2.100 6.653

Iterative ….. 2.627 380.713 2.179 3.856

16 8

Combinational 66.053 ….. ….. ….. …..

Pipelined ….. 2.845 351.512 3.161 8.992

Iterative ….. 2.862 349.424 2.348 3.964

32 16

Combinational 289.622 ….. ….. ….. …..

Pipelined ….. 4.058 246.418 4.936 13.416

Iterative ….. 3.619 276.304 2.863 4.074

64 32

Combinational 1160.928 ….. ….. ….. …..

Pipelined ….. 14.487 69.029 5.379 22.442

Iterative ….. 4.788 208.862 3.000 4.230

FPGA Implementation of Fixed point Integer Divider Using Iterative Array Structure

 177 www.erpublication.org

0

2

4

6

8

10

12

2 4 8 16 32 64

M
in

im
u

m
 p

er
io

d
 (

n
s)

Number of Dividend bits

Pipelined

Iterative

0

100

200

300

400

500

2 4 8 16 32 64M
ax

im
u

m
 F

re
q

u
en

cy
 (

M
H

z)

Number of Dividend bits

Pipelined

Iterative

0

2

4

6

8

10

2 4 8 16 32 64

M
in

im
u

m
 i
n

p
u

t
ar

ri
v
al

 t
im

e

b
ef

o
re

 c
lo

ck
 (

n
s)

Number of Dividend bits

Pipelined

Iterative

0

10

20

30

40

50

60

2 4 8 16 32 64 M
ax

im
u

m
 o

u
tp

u
t
re

q
u

ir
ed

 t
im

e

af
te

r
cl

o
ck

 (
n

s)

Number of Dividend bits

Pipelined

Iterative

0

500

1000

1500

2 4 8 16 32 64M
ax

im
u

m
 c

o
m

b
in

at
io

n
al

 p
at

h

d
el

ay
 (

n
s)

Number of Dividend bits

0

5

10

15

20

2 4 8 16 32 64

M
in

im
u

m
 p

er
io

d
 (

n
s)

Number of Dividend bits

Pipelined

Iterative

0

200

400

600

800

1000

1200

2 4 8 16 32 64

M
ax

im
u

m
 F

re
q

u
en

cy
 (

M
H

z)

Number of Dividend bits

Pipelined

Iterative

0

1

2

3

4

5

6

2 4 8 16 32 64

M
in

im
u

m
 i
n

p
u

t
ar

ri
v
al

 t
im

e

b
ef

o
re

 c
lo

ck
 (

n
s)

Number Dividend bits

Pipeline

Iterative

0

5

10

15

20

25

2 4 8 16 32 64 M
ax

im
u

m
 o

u
tp

u
t
re

q
u

ir
ed

 t
im

e

af
te

r
cl

o
ck

 (
n

s)

Number of Dividend bits

Pipelined

Iterative

Fig. 7: Various parameter graph for Spartan 3

0
500

1000
1500
2000
2500
3000

2 & 1 4 & 2 8 & 4 16 & 8 32 &
16

64 &
32M

ax
im

u
m

 c
o
m

b
in

at
io

n
al

 p
at

h

d
el

ay
 (

n
s)

number of bits of Dividend & Divisor

Fig. 8: Various parameter graph for Virtex 4

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-3, Issue-4, April 2015

 178 www.erpublication.org

VIII. CONCLUSION

The paper introduces three types of synthesizable model of

the divider that can be implemented in any FPGA devices. In

our approach the designs have been targeted to Spartan-3 &

Virtex-4 and the results have been compared respectively.

The Maximum combinational path delay (ns) in the

„Combinatorial Array Divider‟ increases exponentially as the

number of dividend (or divisor) bits increases. Hence, the

overall execution time increases exponentially with the

increase in the input operand value. The minimum period

(ns) time for execution in „Fully Pipelined Array Divider‟ is

less than the execution time in „Iterative Restoring Divider‟

only when the number of dividend/divisor bits is less than

16/8. But, when these number of bit values are increased,

then the „Iterative Restoring Divider‟ works effectively as

compared to „Fully Pipelined Array Divider‟. This inference

is justified by the results obtained by both the Maximum

frequency (MHz) and the Minimum input arrival time before

clock: this is because the Maximum output required time

after clock (ns) remains almost constant for „Iterative

Restoring Divider‟ whereas it increases exponentially for

„Fully Pipelined Array Divider‟. The „Iterative Restoring

Divider‟ requires least amount of area to be implemented,

while „Combinatorial Array Divider‟ requires moderate and

the „Fully Pipelined Array Divider‟ requires the maximum

amount of area to be implemented.

REFERENCES

[1]. Fedra, Z.; Kolouch, J., "VHDL procedure for combinational

divider," Telecommunications and Signal Processing (TSP),

2011 34th International Conference on , vol., no., pp.469,471,
18-20 Aug. 2011

[2]. Agrawal, Dharma P., "Optimum array-like structures for

high-speed arithmetic," Computer Arithmetic (ARITH), 1975
IEEE 3rd Symposium on, vol., no., pp.208,219, 19-20 Nov. 1975

[3]. Aoki, T.; Nakazawa, K.; Higuchi, T., "High-radix parallel VLSI

dividers without using quotient digit selection tables,"
Multiple-Valued Logic, 2000. (ISMVL 2000) Proceedings. 30th

IEEE International Symposium on , vol., no., pp.345,352, 2000

[4]. Cappa, M.; Hamacher, V.C., "An Augmented Iterative Array for
High-Speed Binary Division," Computers, IEEE Transactions

on, vol.C-22, no.2, pp.172,175, Feb. 1973

[5]. Takagi, N.; Kadowaki, S.; Takagi, K., "A hardware algorithm for

integer division," Computer Arithmetic, 2005. ARITH-17 2005.

17th IEEE Symposium on , vol., no., pp.140,146, 27-29 June

2005
[6]. Kei-Yong Khoo; Willson, A.N., Jr., "Efficient VLSI

implementation of N/N integer division," Circuits and Systems,

2005. ISCAS 2005. IEEE International Symposium on , vol., no.,
pp.672,675 Vol. 1, 23-26 May 2005

Fig. 9: Area comparison for Spartan 3

Fig. 9: Area comparison for Virtex 4

FPGA Implementation of Fixed point Integer Divider Using Iterative Array Structure

 179 www.erpublication.org

[7]. Wang, C.-C.; Huang, C.-J.; Lin, G.-C., "Cell-based
implementation of radix-4/2 64b dividend 32b divisor signed

integer divider using the COMPASS cell library," Computers

and Digital Techniques, IEE Proceedings - , vol.147, no.2,
pp.109,115, Mar 2000

[8]. Oberman, S.F.; Flynn, M., "Division algorithms and

implementations," Computers, IEEE Transactions on , vol.46,
no.8, pp.833,854, Aug 1997,

[9]. N. Sorokin, “Implementation of high-speed fixed-point dividers

on FPGA,” Journal of Computer Science & Technology, Vol. 6,
No. 1, April 2006, p. 8 – 11.

[10]. J. E. Robertson, “A new class of digital division methods," IRE

Trans. Electronic Computers, vol.EC-7, pp.218-222, Sept. 1958.
[11]. Hallin, T.G.; Flynn, M., "Pipelining of arithmetic functions,"

Computer Arithmetic (ARITH), 1972 IEEE 2nd Symposium on ,

vol., no., pp.1,28, 15-16 May 1972

Narendra K, Student (M.Tech) Digital Electronics

and Communication systems, Malnad College of
Engineering, Hassan, Karnataka, India,

+91-9738543811,

 ShabirAhmed B J, Student (M.Tech) Digital
Electronics and Communication systems, Malnad

College of Engineering, Hassan, Karnataka. India.

+91-9738417860,

Swaroop Kumar K, Student (M.Tech) Digital
Electronics and Communication systems, Malnad

College of Engineering, Hassan, Karnataka, India,

+91-7411379265,

Asha G H, Associate Professor, Dept. of Electronics
and communication, Malnad College of

Engineering, Hassan, Karnataka, India,
+91-9448033837.,

