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 

Abstract— This study investigated Human Immunodeficiency 

Virus (HIV) models of Liancheng and Micheal. The model was 

extended by incorporating the treatment term  and a 

polynomial of the form 
v11

1


 which gives information about 

the current and past states of the virus. The optimality system 

was derived and an optimal control model of drug treatment of 

HIV infection of CD4+T-cells was investigated. Conditions for 

the optimal control were considered using Pontryagin’s 

maximum principle and solve numerically using Adomian 

Decomposition Method (ADM). Global stability of the 

equilibria, the existence and uniqueness of the solution to the 

problem for the optimal control pair were established. The 

model exhibit two equilibria, disease-free and endemic 

equilibrium. The simulated optimal control pair  21,uu  

controls the percentage effect of the chemotherapy on the 

CD4+T-cells and represents the efficiency of the drug treatment 

in inhibiting viral production and preventing new infections. 

The characterized objective function based on maximizing 

T-cells and minimizing the cost of chemotherapy treatment was 

in agreement with the existing literature. The numerical results 

obtained using ADM was also in complete agreement DTM. The 

result obtained also show that the information on the current 

and past states of the virus would minimize the endemicity of the 

virus.  

 

Index Terms— HIV infection, Stability, Basic reproduction 

number, Lyapunov functions,  Adomian decomposition method 

I. INTRODUCTION 

  AIDS is one of the deadliest epidemics in human history. It 

was first identified in 1981 among homosexual men and 

intravenous drug users in New York and California. Shortly 

after its detection in the United States, evidence of AIDS 

epidemics grew among heterosexual men, women, and 

children in sub-Saharan Africa. AIDS quickly developed into 

a worldwide epidemic, affecting virtually every nation. The 

United Nations Program on HIV/AIDS (UNAIDS) estimates 

that the worldwide number of new cases of HIV infection 

peaked in the later 1990s with more than 3 million people 

nearly infected each year. However, some regions of the 
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world, especially Vietnam, Indonesia and other countries in 

Southeast Asia, continued to see an increase in the 

early2000s. In addition, the number of people living with HIV 

or AIDS has continued to rise as a result of new drug 

treatments that lengthen life. 

 

AIDS is the final stage of a chronic infection with the human 

immunodeficiency virus. There are two types of this virus: 

HIV-1, which is the primary cause of AIDS worldwide, and 

HIV-2, found mostly in West Africa. Inside the body HIV 

enters cells of the immune system, especially white blood 

cells known as T cells. These cells orchestrate a wide variety 

of disease-fighting mechanisms. A particularly vulnerable to 

HIV attack are specialized “helper” T cells known as CD4
+ 

T-cells. When HIV infects a CD4
+ 

T-cells, it commandeers the 

genetic tools within the cell to manufacture new HIV virus. 

The newly formed HIV virus then leaves the cell, destroying 

the CD4
+ 

T-cells in the process.  

 

No existing medical treatment can completely eradicate HIV 

from the body once it has infected human cells. The loss of 

CD4
+ 

T-cells endangers health because these cells help other 

types of immune cells respond to invading organisms. The 

average healthy person has over 1,000 CD4
+ 

T-cells per micro 

liter of blood. In a person infected with HIV, the virus steadily 

destroys CD4
+ 

T-cells over a period of years, diminishing the 

cells‟ protective ability and weakening the immune system. 

When the density of CD4
+ 

T-cells drops to 200 cells per micro 

liter of blood, the infected person becomes vulnerable to 

AIDS-related opportunistic infectious and rare cancers, which 

take advantage of the weakened immune defenses to cause 

disease [9]. A model for the interaction of HIV with CD4
+
 T 

cells that considers four populations: uninfected T cells, 

latently infected T cells, actively infected T cells and free 

virus [6]. Effect of AZT on viral growth and T-cell population 

dynamics were considered and numerical bifurcation 

techniques were used to map out the parameter regimes of 

these various behaviours and they showed that when the 

endemic state is stable, it is characterized by a reduced 

number of T cells compared with the uninfected state, thus 

T-cell depletion occurs through the establishment of a new 

steady state. 

 

 An epidemic model of HIV infection of CD4
+ 

T-cells with 

cure rate and delay were examined [8].The dynamics showed 

that is completely determined by the basic reproduction 

number R0<1. If R0<1, the disease-free equilibrium is 

asymptotically stable and the disease dies out. If R0>1, a 

unique endemic equilibrium exists and is globally stable in the 

interior of the feasible region. Moreover, they proved the 

effect of that delay on the stability of the equilibria and 
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showed that the introduction of a time delay in the 

virus-to-healthy cells transmission term can destabilize the 

system, and periodic solutions can arise through Hopf 

bifurcation. Model of cell-free viral spread of human 

immunodeficiency virus (HIV) in a well-mixed compartment 

such as the blood stream were studied and discussed the 

existence, stability of the infected steady state and introduced 

a discrete time delay to a CD4
+ 

T-cell and the emission of viral 

particles on a cellular level [12] .They studied the effect of the 

time delay on the stability of the endemically infected 

equilibrium; criteria were given to ensure that the infected 

equilibrium is asymptotically stable for all delay. 

Mathematical models were considered for the infection of 

human immunodeficiency virus-type 1 (HIV-1) with target 

cells between initial infection, assumed that the infection 

among the cells can be approximated and the classical 

mathematical model with nonlinear infection rate [36]. 

 

They proved, if 10 R , then  the HIV infection is cleared 

from the T-cells population; if 10 R , then the HIV infection 

persists. Discrete time delay to the model to describe the time 

between infection of a CD4
+ 

T cells and the emission of viral 

particles on a cellular level were studied [40]. They examined 

the effect of the time delay on the stability of endemically 

infected equilibrium; criteria are given to ensure that the 

infected equilibrium is asymptotically stable for all delay. 

Also they observed that time delay does not induce instability 

and oscillations in the model. Mathematical model based 

upon the assumption that actively—infected helper T-cells 

come only from the latently-infected T-cell population [37] 

and they studied the time delay that appears in the equations is 

assumed to be the average time that a T-cell remains latently 

infected. 

 

An optimal control model of drug treatment of HIV infection 

of 


4CD T cells were considered [42, 43] .They showed that 

the optimal controls represent the efficiency of drug treatment 

in inhibiting viral production and preventing new infections. 

Existence for the optimal control pair is established and the 

Pontryagin‟s maximum principle is used to characterize these 

optimal controls. The optimality system was derived and 

solved numerically. The results also showed that the optimal 

treatment strategies reduce the viral load and increase the 

uninfected 


4CD T cells count, which improves the quality of 

life of the patient. Series technique for optimal control of HIV 

infection dynamics was reported [41]. They obtained the 

minimum amount of medicine required and showed that the 

number of uninfected 


4CD T cells is maximized. Hence, 

minimum amount of medicine ensured that the effects of the 

chemotherapy are minimized. 

II. MODEL FORMULATIONS 

Considered a three dimensional model which consists of 

concentration of susceptible CD4
+
T cells (T), concentration 

of infected CD4
+
T cells (T

*
) and free HIV viruses with a 

general non-linear incidence rate. 

)3.2(

)2.2(
1

)1.2(
1

1

*

**

1

*

*

1max

*

VTN
dt

dV

TT
V

kVT

dt

dT

T
V

kVT

T

TT
rTTs

dt

dT






























 


 

Where T, 
*T  and V denote the size of compartmental of 

concentration of the uninfected TCD

4
 

Cells, infected TCD

4
 and free virus respectively. s is the 

rate of supply of CD4
+
T cells from precursors in the bone 

marrow and thymus,   is the death rate of uninfected CD4
+
T 

cells, k is the rate CD4
+
T cells becomes infected by free virus 

while Tmax  is the maximum CD4
+
T cells population level.   

is the death rate of infected CD4
+
T cells, N is the number of 

free virus produced by lysing a CD4
+
T cells.  is the death 

rate of free virus. r is the rate of growth for the CD4
+
T cells 

population. Qualitative investigation of the system describes 

by Equations (2.1-2.3) reveals that the long-term behaviou, 

falls into two categories: endemic or dies out. When the 

diseases dies out naturally, the solution asymptotically 

approaches a diseases free equilibrium 0  

 of the form, 

 
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The threshold that determines the stability of this equilibrium 

is the 0R , 
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When the disease free equilibrium is unstable, there exists an 

endemic equilibrium of the form 1 is given as  
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Obviously Equation (2.4) will only exist provided 10 R  

III. POSITIVITY OF SOLUTIONS 

Theorem 3.1: Let the initial data ,0)0( T ,0)0( T ,0)0( V then the solutions ),(tT ),(tT 

 

),(tV of HIV free model (2.1) are positive for all 0t   [45] 

Proof: It is clear from the first equation of model (2.1) that  
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Applying the initial condition 

Hence 
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For all 0t  

Proof: It is clear from the second equation of model (2.2) that 
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Proof: It is clear from the third equation of model (2.3) that 
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4.1 Global Stability of Virus Free  
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We shall prove the global stability of the virus-free equilibrium by means of Lyapunov function of the system of Equation 

(2.1-2.3) 

Theorem 4.1: The virus-free equilibrium is globally asymptotically stable if 10 R . 

Proof:  Let us consider the Lyapunov function 
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Hence, the largest invariant set included in  0L  is reduced to the virus free equilibrium. Thus by Laselle‟s invariance 

principle, the VFE is globally asymptotically stable. [44, 46, 47] 

 

4.2 Global Stability of Endemics Equilibrium 

We shall prove the global stability of endemic equilibrium obtained by means of Lyapunov‟s direct method. The Lyapunov 

function constructed of the suitable combinations of composite quadratic and logarithmic functions 
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Then L is 
1C . on the interior of , 1  is the global minimum of L on   and   .0,, * VTTL   The time derivative of L 

computed along solution of equation (2.1-2.32) is  
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Hence 
1L  is negative. Note that, 01 L  if and only if VVandTTTT   **,  

Therefore the largest compact invariant set in    0:,, 1*  LvTT  is the singleton  1 , where 1 is the endemic 

equilibrium. LaSalle‟s invariant principle then implies that 


1 is globally asymptotically stable in the interior of . [44, 46, 47] 

 
5.1 Optimal Control Formulation 

 

We introduced optimal control to the equation (2.1-2.3) then we have new system of the equation below:  
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The model describes the dynamic interactions among healthy CD4
+
Tcells, infected cells and free virus in the organisms and it is 

given by Equation (5.1-5.3) above. The influence of the antiretroviral drugs in the model Equation (5.1-5.3) can be simplified 

by applying. Taylor series decomposition as follows: 
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5.2 Optimality system  

Pontryagin‟s Maximum principle provides necessary conditions for an optimal control problem. This principle converts 

problem (5.5-5.8) into a problem of maximizing and Hamiltonian, H, point wisely with respect to u1 and u2: 
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Solving the first order condition 

 )12.5(00
2











u

H
and

u

H

i

 

Then we obtain 

)14.5(0)(

)13.5(0
1

)(

*

3422

2

1

2111














TNuB
u

H

V

kVT
uB

u

H

i






 

Then the optimality conditions from (5.12 and 5.13) we obtained; 
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Utilizing equation (5.18) in (5.5-5.8) we have the following optimality system 
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Applying (5.18) in (5.11) and differentiate w.r.t to WVTT ,,, *
 we have; 
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However, we solve the adjoin equations for problem (5.5-5.8) 

Using Pontryagin‟s Maximum Principle; 
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Applying equation (5.28), we have 
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with transversalty conditions  
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Theorem 5.1: given optimal controls 
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 of the corresponding state system of problem 

(5.9), there exists adjoint variable  4321 ,,  and
 satisfying the Equations (5.33). However, the optimal control is given 

by (5.18) 

 

Proof: the adjoint equations and transversality conditions can be obtained by using Pontryagin maximum principle such as; 
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The optimal control 
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1 uandu  can be solved from the optimality conditions 
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By the bounds in u of the controls, it is easy to obtain 
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1 uandu  in the form of Equation (5.10) 

5.3Existence of an Optimal Control Pair 

The existence of the optimal control pair can be obtained using a result by [47]. 
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 To proof the theorem in (5.37) an existence result is used and the following properties are checked: 

(1) The set of controls are corresponding to state variables is nonempty  

(2) The control U set is convex and closed 

(3) The right hand side of the state system is bounded by a linear function in the state and control variables. 

(4) The integrand of the objective functional is concave on U. 

(5) There exists constants  0, 21 cc , and 0B such that the integrand  21,,, uuzxL of the objective functional 
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In order to verify these conditions, we use a result by [43]to give existence of solutions of system equation (5.5-5.8), which gives 

condition 1. The control set is convex and closed by definition, which gives condition 2. Since our state system is bilinear in 

u1,u2, the right hand sides of system equations (5.5-5.8), satisfies condition 3, using the boundedness of the solutions. The 

integrand of our objective functional is concave.  

Now to the last condition needed. 

Where c2 depends on the upper bound on x, and 01 c since 0, 21 BB . Hence, there exists an optimal control pair. 

 

5.4 Uniqueness of the Optimality System 

Theorem 5.3:  The function 
)),,min(max()(* baccu 

 is Lipschitz continuous in c, where a<b are some fixed positive 

constants. 

 

Proof: consider c1, c2 real number and a,b are fixed positive constants. We will show that the Lipschitz continuity holds in all 

possible cases for max(c,a). Similar arguments hold for )),,min(max( bac  as well. 



 

Optimal Control Analysis of the Mathematical Model for HIV Infection of CD4
+
 T Cells

 
with Treatment using 

Adomian Decomposition Method 

 

                                                                                              372                                                         www.erpublication.org 

)(0)(),max(),max(:,)4(

)()(),max(),max(:,)3(

()(),max(),max(:,)2(

)(),max(),max(:,)1(

212121

2122121

2112121

212121

ccaaacacacac

cccaacacacac

ccacacacacac

ccacacacac









 

Hence )(),max(),max( 2121 ccacac   and we have Lipschitz continuity of u* in c. 

 

 Theorem 5.4. For sufficiently small final time (tf), bounded solutions to the optimality systems, (5.19-5.22) and (5.29-5.32) are 

unique. 

Proof:  With assumption in [49]; suppose ),,,,,,,( 5321
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Now we substitute peT t  into the first ODE of (5.28) and get 
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From equation (5.29-5.33), we obtain; 
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Now we subtract the equations for TandT ; 
** TandT ; VandV ; WandW ;   
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Then multiply each equation by appropriate different of functions and integrate from 0 to tf.  

Next we add all eight integral equations and will use estimates to obtain uniqueness. Using  

Theorem (5.3); we have 
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Where c1 and c2 depend on the coefficients and the bounds on states and adjoints. Combining  

four of these estimates gives 



 

Optimal Control Analysis of the Mathematical Model for HIV Infection of CD4
+
 T Cells

 
with Treatment using 

Adomian Decomposition Method 

 

                                                                                              374                                                         www.erpublication.org 



   

  )57.5(

~~

)0()(
2

1
)()0()(

2

1
)()(

2

1
)()(

2

1

222

0

2
**2

3

21

222

0

2
**2

2222**2

zzwwqqpppp

eCCdtzzwwqqpppp

zzdtwwqqtpptpp

f

f

f

t

t

t

ff












  

 

Thus from above equation we conclude that;  
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6.1 Adomian Decomposition Technique  (ADM) 

An explicit construction of approximate non-perturbative solutions of the system (5.5-5.8) was examining using Adomian 

decomposition method .The equivalent canonical form of this system is as follows:  
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Adomian decomposition method was used to obtain the solutions of equations (3.290-3.293) are considered being as the sum of 

the following series; 
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Then we approximate the non-linear terms in the system as follows; 
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The non-linear function An, Bn, Cn, are called Adomian‟s polynomials. Substituting equation  

(6.5-5.14) into (6.1-6.4) then we have; 
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From equation (6.15-6.18) we define the following scheme: 
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Using Equation  (6.9-6.14). Some of the Adomian polynomials can be obtained as  

 

follows;

 )27.6()( 2TtF   

We first set  

)28.6(
0







n

nTT  

Substituting (6.28) into (6.27)gives 

  )29.6(....)(
2

543210  TTTTTTtF  

Expanding the expression at the right-hand side gives 

)30.6(...2222)( 2130

2

12010

2

0  TTTTTTTTTTtF  

The expansion in equation (6.30) can be rearranged by grouping all terms with the sum of the  

 

subscripts of the components of the same. This means that we can rewrite equation (6.30) as

 
)31.6(....222

222222)(

324150

2

221402030

2

12010

2
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



TTTTTT

TTTTTTTTTTTTTTTtF
 

This gives Adomian polynomials for Equation (3.316) by 
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Substituting (6.34 and 6.35) into Equation (6.33) yields 

    )36.6(........)( 543210543210  TTTTTTVVVVVVTF  

Multiplying the two factors gives 

)37.6(...

)(

22313140

400322213002112020101000
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TVTVVTTV

VTVTVTVTVTVTVTTVVTTVVTTVtF
 

Collecting all terms with the same sum of subscripts of the component Tn, we can rewritten  

Equation (6.37) in the form  

)38.6(....

)(

0413223140

031221300211201010
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VTVTVTVTVT
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Consequently, the Adomian polynomials are given by 
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Substituting (6.42 and 6.41) into Equation (6.40) yields 
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2
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0
*
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Multiplying the two factors gives 
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Colleting all terms with the same sum of subscripts of the components Tn, we can rewritten  

equation (6.44) in the form  
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Consequently, the Adomian polynomials, are given by 
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IV.  NUMERICAL RESULTS AND DISCUSSION 

 

 
 

Fig 1: Uninfected CD4
+
T-cell count with various 1 and without treatment against time 
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Fig 2: Infected CD4
+
T-cell count with various 1 and without treatment against time 
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Fig 3: Viral particles with various 1 and without treatment against time 
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Fig 4: Uninfected CD4
+
T-cell count with various 1 and treatment against time 
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Fig 5: Infected CD4
+
T-cell count with various 1 and treatment against time 

  
89.0;40.0;01.0;005.0;05.0;01.0

;1.0;26.0;4.2;500;02.0;000024.0;15

2

31







 qcswhen
 

 

 

Fig 6: Infectious viral particle with various 1 and treatment against time 
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Fig 7: Non- infectious viral particle with various 1 and treatment against time 
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V.  CONCLUTIONS 

 

In this paper, the study of the behavior of the mathematical 

model adopted to describe the HIV infection provides an 

explanation for the viral sudden deviation during the 

suppression of HIV. Adomian Decomposition Method  

 

 

(ADM) was also employed to compute an approximation to 

the solution of the non-linear system of differential equations 

governing the problem. Maple is used to carry out the 

computations and graphical results were presented to 

illustrate the solution. 

 

 

Appendix 
### ADOMIAN DECOMPOSITION METHOD ### 
>restart:a:=array(0..50):x:=array(0..50):y:=array(0..50):APROX:=array(0..50):y[0]:=

0.0:x[0]:=0.0:h:=0.1:M:=8:N:=10:a[0]:=719.57:m:=0:beta:=0.3:alpha:=0.02:r:=3.0:g:=2

.4:k:=0.000027:T[max]:=1500.0:rho:=0.01:s:=15:b[0]:=27:c[0]:=3341:d[0]:=0:u[1]:=0.0

083:u[2]:=0.0083:U0:=s*t:U1:=0.0:U2:=0.0:U3:=0.0:T0:=(a[m]+t*diff(a[m],t))+(U0):I0:

=(b[m]+t*diff(b[m],t))+(U1):v0:=(c[m]+t*diff(c[m],t))+(U2):w0:=(d[m]+t*diff(d[m],t)

)+(U3):A0:=T0^2:B0:=v0*T0:C0:=T0*I0:T1:=alpha*int(T0,t=x[m]..t)+(r*int(T0,t=x[m]..t

))((r/T[max])*int(A0,t=x[m]..t))((r/T[max])*int(C0,t=x[m]..t))((1u[1])*k*int(B0,t=x

[m]..t))+(rho*int(I0,t=x[m]..t)):I1:=((1- u[1])* 

k*int(B0,t=[x]..t))((beta+rho)*int(I0,t=x[m]..t)):v1:=(1u[2])*N*beta*int(I0,t=x[m].

.t)g*int(v0,t=x[m]..t):w1:=u[2]*N*beta*int(I0,t=x[m]..t)g*int(w0,t=x[m]..t):A1:=2*T

0*T1:B1:=v0*T1+v1*T0:C1:=T0*I1+T1*I0:T2:=alpha*int(T1,t=x[m]..t)+(r*int(T1,t=x[m]..

t))-((r/T[max])*int(A1,t=x[m]..t))-((r/T[max])*int(C1,t=0..t))-((1-u[1])*k*int(B1,t

=x[m]..t))+(rho*int(I1,t=x[m]..t)):I2:=((1-u[1])*k*int(B1,t=x[m]..t))-((beta+rho)*i

nt(I1,t=0..t)):v2:=(1-u[2])*N*beta*int(I1,t=x[m]..t)g*int(v1,t=x[m]..t):w2:=u[2]*N*

beta*int(I1,t=x[m]..t)g*int(w1,t=x[m]..t):A2:=2*T0*T2+T1^2:B2:=v0*T2+v1*T1+v2*T0:C2

:=T0*I2+T1*I1+T2*I0:T3:=alpha*int(T2,t=x[m]..t)+(r*int(T2,t=x[m]..t))((r/T[max])*in

t(A2,t=x[m]..t))((r/T[max])*int(C2,t=0..t))((1u[1])*k*int(B2,t=x[m]..t))+(rho*int(I

2,t=x[m]..t)):I3:=((1u[1])*k*int(B2,t=x[m]..t))((beta+rho)*int(I2,t=0..t)):v3:=(1-u

[2])*N*beta*int(I2,t=x[m]..t)g* 

int(w2,t=x[m]..t):w3:=u[2]*N*beta*int(I2,t=x[m]..t)-g*int(v2,t=x[m]..t):A3:=2*T0*T3

+2*T1*T2:B3:=v0*T3+v1*T2+v2*T1+v3*T0:C3:=T0*I3+T1*I2+T2*I1+T3*I0:T4:=-alpha*int(T3,

t=x[m]..t)+ 

(r*int(T3,t=x[m]..t))-((r/T[max])*int(A3,t=x[m]..t))-((r/T[max])*int(C3,t=0..t))-((

1-u[1])*k*int(B3,t=x[m]..t))+ 

(rho*int(I3,t=x[m]..t)):I4:=((1-u[1])*k*int(B3,t=x[m]..t))-((beta+rho)*int(I3,t=0..

t)):v4:=(1- u[2])*N*beta* 
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int(I3,t=x[m]..t)- g*int(v3,t=x[m]..t):w4:=u[2]* 

N*beta*int(I3,t=x[m]..t)-g*int(w3,t=x[m]..t): 

Eq:=T0+T1+T2+T3+T4:Eq2:=I0+I1+I2+I3+I4:Eq3:=v0+v1+v2+v3+v4:Eq4:=w0+w1+w2+w3+w4: 

........7t.103709333+0t.237091765-0t.109722439-6t.673347042

.....0t4631.97036+0t7735.94776-5t9608.98070+7t7937.17334-3341

.......6t11.5746952+7t6.18545580-2t39.0810662-3t56.0046568+27T

......+0t41.3182938-0t719.661006-8t34.9782062+4t1030.11312+719.57

432

432

432*

432









w

V

T
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