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Abstract— MIMO system provides spatial multiplexing 

gain and diversity gain. Maximum likelihood solution is 

optimal decoder for MIMO systems. However, computational 

complexity of such lattice decoder is high in terms of hardware 

implementation. Moreover, throughput is also variable. In this 

paper, Sphere Decoding algorithm is used which provides an 

ease in terms of computational complexity and also throughput 

is constant. For real time applications, constant throughput is 

efficient. Hence, Sphere Decoder provides more efficient and 

realizable hardware. Such algorithm increase speed on chip 

and can be extended such that operation is performed using 

less no. of cycles. For a 4-transmit and 4-receive antennas 

system using QAM, a higher decoding throughput in terms of 

Mbps and low BER for MIMO system can be achieved. Also 

BER performance decoding throughput in terms of Mbps of 

Sphere Decoder is close to Maximum Likelihood solution. 
 

Index Terms— lattice decoding, Sphere decoding, Maximum 

Likelihood, k-best SD, breadth first search. 

 

I. INTRODUCTION 

  This section gives introduction of MIMO Detection and its 

various literatures. It introduces MIMO system and tradeoff 

between Spatial multiplexing gain and Diversity gain. 

Section II gives general classification of MIMO Decoders 

and various techniques employing them. It also highlights 

pros and cons of mentioned techniques. Section III gives 

detailed idea of Sphere decoding and tree traversal and 

radius reduction based on constraints of SD. It describes 

difference between depth-first and breadth-first tree search. 

Section IV shows lattice decoders and algorithm 

implemented for k-best with and without sorting techniques. 

Section V shows hardware architecture and various 

Simulation results. 

 

A. MIMO Decoders 

Recently, need of higher transmission rates with less 

transmission errors have increased in wireless 

communication. Hence use of multiple antennas for 

communication is need of an hour. Hence, next-generation 

wireless networks have emerged to offer higher transmission 

rates with less error. Multiple antenna systems increase 

 

spectral efficiency of the system through the use of diversity 

techniques and SM (Spatial Multiplexing) scheme. 
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In [1] a basic transmit diversity scheme is developed for 

two transmit antennas, while in [2] the diversity gain is 

increased using four transmit antennas with orthogonal 

codes. In past researches, the channel is assumed to be 

uncorrelated and at the receiver maximum-likelihood 

detection is employed together with combining techniques. 

On the other hand, the spectral efficiency of the system is 

increased by employing spatial multiplexing (SM) [3] which 

permits the opening of multiple spatial data pipes between 

transmitter and receiver without any additional bandwidth or 

power requirement. MIMO systems introduce a spatial 

dimension to existing rate adaptation algorithms that implies 

to decide MIMO transmission type, STBC, spatial 

multiplexing or hybrid approaches, as well as modulation 

and coding type. However, in MIMO systems, correlations 

may occur between channel coefficients due to insufficient 

antenna spacing and the scattering properties of the 

transmission environment. This may lead to significant 

degradation in system performance. In this regard, adding 

more antennas to the base-station and/or the subscriber unit 

require more spatial dimension at the base station and/or the 

subscriber unit in order to have an uncorrelated channel 

between antenna elements. Hence, it would not be feasible 

to design higher order MIMO systems in small handsets. On 

the other hand the use of dual-polarized antenna elements is 

introduced as a space and cost-effective alternative that is 

used to transmit information symbols through vertical and 

horizontal polarizations without any additional power and 

bandwidth requirement. In communication with dual-

polarized antenna elements, the information streams are sent 

through vertical and horizontal polarizations of the antenna 

elements at the same time and frequency. 

However as pointed out in [4], imperfections of 

transmit and/or receive antennas and XPD factor, which is 

the power ratio of the co-polar and cross-polar components, 
degrades the system performance considerably. In [5], a 

system employing one dual-polarized antenna at the 

transmitter and one dual-polarized antenna at the receiver is 
presented and the error performance of 2-antenna SM and 

STBC transmission schemes are derived for this virtual 

MIMO system. Notice that, in [5], a single-input single-

output (SISO) system is enabled with MIMO capabilities 

through the use of dual-polarized antennas. In IEEE 802.11n 

and WiMAX systems, 2×1 and 2×2 antenna configurations 

are used with Alamouti and SM transmission techniques, 

however, although it is defined in the standards, higher 

order MIMO systems are not used due to the space problem. 
The system throughput is controlled by both these two 

MIMO options and modulation and coding schemes (MCS) 

defined in the standards. However, when dual-polarized 
antenna elements are used at both link ends, a virtual 4×4 

MIMO system is obtained where the hybrid MIMO options 

can also be carried out to maximize detection performance 

and multiplexing gain of the system.  

VLSI Implementation of Optimal K-Best Sphere 

Decoder 

Nishit M Vankawala, Komal M Lineswala, Prof. Rakesh Gajre 



                                                                                

International Journal of Engineering and Technical Research (IJETR) 

 ISSN: 2321-0869, Volume-2, Issue-12, December 2014   

                                                                                                  207                                                         www.erpublication.org 

 

In combination of virtual 4×4 MIMO system with 

MCS’s including large constellation size; a tremendous 

computational effort is required when the optimal detection 

techniques are employed at the receiver, especially for SM 

and hybrid transmission techniques. On the other hand, we 

need a low complexity but an effective receiver.  

 

Recently, a lot of research efforts have done in order to 

suppress undesired transmission effects through low 

complexity iterative equalization methods based on the joint 

use of linear MMSE filtering and SIC process. For instance, 

in [6] multiple access interference are cancelled out for 

CDMA systems while in [7] ISI effects are suppressed for 

single antenna systems. However, when the channel 

memory length is large, employing equalization at time 

domain would require a considerable computational effort 

due to the matrix inversion. Therefore, frequency domain 

equalization is introduced in the literature and through [8][9] 

low complexity iterative frequency domain equalization is 

studied. Moreover, equalization task is performed at 

frequency domain in OFDM systems where frequency-

selective fading channels become frequency-flat fading 

channels by sending the symbols through orthogonal 

subcarriers. By adding at least channel length cyclic prefix 

to the system, OFDM technology solves the ISI problem. 

Due to that reason, OFDM is used as a standard technique in 

IEEE 802.11n WiMAX systems. When combining four 

dual-polarized MIMO transmission techniques with MCS’s 

introduced in IEEE 802.11n and WiMAX standards, a 

transmission channel can be fully utilized via a proper 

adaptive switching mechanism. In this regard, we employ 

the standard link adaptation technique, given in [10] where 

SNR information is defined as a link quality indicator and 

the transmission parameters are adapted to the current 

channel conditions according to the SNR knowledge.  

 

Diversity gain and  spatial  multiplexing  gain  are  

related  to  system  coverage  range  and  data  rate, 

respectively.  Both gains can be improved using a larger 

antenna array.    However, given a MIMO system, there is a 

fundamental trade-off between these two gains.  In the 

diversity-multiplexing space, repetition code, Alamouti 

code, and space-time code use data redundancy to increase 

diversity at the price of losing spatial multiplexing gain.  In 

contrast, Bell Labs Layered Space Time (BLAST) 

algorithm, Singular Value Decomposition (SVD), and QR 

decomposition  allocate data-streams in  different  Eigen-

modes  to  maximize  spatial  multiplexing  gain  while  

sacrificing diversity gain, as shown in Fig. 1.  

 

Sphere  decoding  is  a  decoding  scheme  that  can  

extract  both  diversity  and multiplexing  gains.  With 

flexibility in coding and modulation, sphere decoder can 

effectively explore the entire tradeoff curve as shown in 

Fig.1. 

 

B. Basic Model for MIMO System 

Our equivalent complex-valued discrete-time baseband 

system model is as follows. 

 

                                       y = Hs + n                                    (1) 

 

 

 
Fig.1. Diversity v/s Multiplexing tradeoff in MIMO 

communications [11]. 

 

 

Fig. 2. Basic Model of MIMO System [11] 

where H denotes the Mr x Mt channel matrix, s= [s1 s2 ……sMt] 

is the Mt-dimensional transmit signal vector, and n stands 

for the Mr-dimensional additive i.i.d. circularly symmetric 

complex Gaussian noise vector. The entries of s are chosen 

independently from a complex constellation Ȯ with Q bits 

per symbol, i.e. Ȯ=2
Q
. The set of all possible transmitted 

vector symbols is denoted by Ȯ
Mt

. The corresponding 

uncoded transmission rate is R= Mt Q bits per channel use 

(bpcu). 

II. CLASSIFICATION OF MIMO DECODERS 

 
Fig. 3. Classification of MIMO Decoder 
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We assume that the receiver has acquired knowledge of 

the channel H (e.g., through a preceding training phase). 

Algorithms to separate the parallel data streams 

corresponding to the transmit antennas can be divided into 

four categories. 

 

1. Linear detection methods invert the channel matrix 

using a zero-forcing (ZF) or minimum mean squared 

error (MMSE) criterion. The received vectors are then 

multiplied by the channel inverse, possibly followed by 

slicing. The drawback is, in general, a rather poor bit-

error-rate (BER) performance. 

 

2. Ordered successive interference cancellation decoders 

such as the vertical Bell Laboratories layered space-

time (V-BLAST) algorithm show slightly better 

performance, but suffer from error propagation and are 

still suboptimal. 

 

3. Maximum-likelihood (ML) detection, which solves 

 

            ŝ = arg min || y-Hs ||
2
       s Ȯ

Mt 
                     (2) 

 

       is the optimum detection method and minimizes the 

BER. A straightforward approach to solve (2) is an 

exhaustive search. Unfortunately, the corresponding 

computational complexity grows exponentially with the 

transmission rate R, since the detector needs to examine 

2
R
 hypotheses for each received vector. While the 

implementation of exhaustive-search ML has been 

shown to be feasible in the low rate regime R<= 8 bpcu, 

complexity quickly becomes unmanageable as the rate 

increases. For example, in a 4 x 4 system (i.e. 

Mr=Mt=4) with 16-QAM modulation (corresponding to 

R= 16 bpcu), 65,536 candidate vector symbols have to 

be considered for each received vector. 

 

4. Sphere decoding (SD) solves the ML detection problem 

[12][13]. While the algorithm has a nondeterministic 

instantaneous throughput, its average complexity was 

shown to be polynomial in the rate [14] for moderate 

rates, but still exponential in the limit of high rates. 

However, these asymptotic results do not properly 

reflect the true implementation complexity of the 

algorithm, which for most practical cases is still 

significantly lower than an exhaustive search. The 

algorithm is thus widely considered the most promising 

approach toward the realization of ML detection in 

high-rate MIMO systems. Ever since its introduction in 

and its application to wireless communications in [13], 

reduction of the computational complexity of the 

algorithm has received significant attention [13][15]. 

However, most modifications of the algorithm proposed 

in the literature so far have been suggested with digital 

signal processor (DSP) implementations in mind. Little 

attention has been paid to the efficient VLSI 

implementation of the SD algorithm and the associated 

performance tradeoffs.  

III. BASICS OF SPHERE DECODING 

In this section, we briefly review the basics of SD, and 

we outline what we consider to be the corresponding state of 

the art. Our description summarizes the original algorithm  

[16], introduced by Pohst, and its subsequent extensions and 

improvements [13][17][15]. We distinguish four key 

concepts, which we describe in the following. 

 

A. Sphere Constraint 

The main idea in SD is to reduce the number of 

candidate vector symbols to be considered in the search that 

solves (2), without accidentally excluding the ML solution. 

This goal is achieved by constraining the search to only 

those points Hs that lie inside a hyper sphere with radius r 

around the received point y. The corresponding inequality is 

referred to as the sphere constraint (SC) 

 

           d(s) < r
2
         where d(s) = ||y-Hs||

2
                     (3) 

 

B. Tree Pruning Strategies 

Only imposing the SC (3) does not lead to complexity 

reductions as the challenge has merely been shifted from 

finding the closest point to identifying points that lie inside 

the sphere. Hence, complexity is only reduced if the SC can 

be checked other than again exhaustively searching through 

all possible transmit vector symbols s Ȯ
Mt

. Two key 

elements allow for such a computationally efficient solution 

 

1.  Computing Metric 

The channel matrix H in (3) can be triangularized using a 

QR decomposition according to H=QR, where the Mr x Mt 

matrix  

     d(s) = c + ||
 
ŷ –Rs ||

2
        where   ŷ = Q

H
 y = Rs

ZF         (4)             

where s
ZF

 is the zero-forcing (or unconstrained ML) solution 

s
ZF 

=H
ƚ 

y (H
ƚ
 is pseudo-inverse of H). The constant c is 

independent of the vector symbol and can hence be ignored 

in the metric computation. In the following, for simplicity of 

exposition, we set c=0. If we build a tree such that the leaves 

at the bottom correspond to all possible vector symbols s 

and the possible values of the entry sMt define its top level i 

(i=1, 2….Mt), we can uniquely describe each node at level 

by the partial vector symbols s
(i)

 =[si si+1 ….sMt]. 

 

Now, we can recursively compute the (squared) distance 

d(s) by traversing down the tree and effectively evaluating 

in (3) in a row-by-row fashion. We start at level i=Mt and 

set    TMt+1(s
Mt+1

) = 0 .The partial (squared) Euclidean 

distances (PEDs) Ti (s
(i)

) are then given by 

 

                  Ti (s
(i)

) = Ti+1(s
(i+1)

) + | ei (s
(i)

) |
2 

                    (5)                                

With  i=Mt, Mt-1….1, where the distance increments of 

| ei(s
(i)

)|
2
 can be obtained as 

                   | ei (s
(i)

) |
2 
=  | ŷi – Σ Rijsj |

2 
                    (6)                          

We can make the influence of si more explicit by writing 

 

                 | ei (s
(i)

) |
2
 = | bi+1(s

(i+1)
) - Rii si|

2
                           (7)               

                       bi+1 (s
(i+1)

) = ŷi –Σ Rij sj                                                    (8)        

where i+1<=j<= Mt. Finally d(s) is the PED of the 

corresponding leaf: d(s) =T1(s). Since the distance 
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increments |ei (s
(i)

)|
2 are nonnegative, it follows immediately 

that whenever the PED of a node violates the (partial) SC 

given by 

                                             

                                  Ti (s
(i)

) < r
2 

                                   (9)                       

then the PEDs of all of its children will also violate the SC. 

Consequently, the tree can be pruned above this node. This 

approach effectively reduces the number of transmit vector 

symbols (i.e. leaves of the tree) to be checked. 

 

2.  Tree Traversal and Radius Reduction 

When the tree traversal is finished, the leaf with the 

lowest T1(s) corresponds to the ML solution. The traversal 

can be performed breadth-first or depth-first. In both cases, 

the number of nodes reached and hence the decoding 

complexity depends critically on the choice of the radius r. 

The k-best algorithm [18] [19] approximates a breadth-first 

search by keeping only up to k nodes with the smallest 

PEDs at each level. The advantage of the k-best algorithm 

over a full (depth-first or breadth-first) search is its uniform 

data path and a throughput that is independent of the 

channel realization and the SNR. However, the k-best 

algorithm does not necessarily yield the ML solution. 

In a depth-first implementation, the complexity and 

dependence of the throughput on the initial radius can be 

reduced by shrinking the radius r whenever a leaf is reached. 

This procedure does not compromise the optimality of the 

algorithm, yet it decreases the number of visited nodes 

compared to a constant radius procedure. As an added 

advantage of the depth-first approach with radius reduction, 

the initial radius may be set to infinity, alleviating the 

problem of initial radius choice. However, in contrast to the 

k-best algorithm, a depth-first traversal does not yield a 

deterministic throughput. Hence breadth first algorithm is 

used for real-time application. 

 

C. Accountable sets 

The admissible set of children s
(i)

 of a particular parent 

s
(i+1)

 in the tree is simply defined by the constellation points 

si for which the PED satisfies Ti (s
(i)

) < r
2
.In the case of real-

valued constellations, one can determine the boundaries of 

an admissible interval using (5) in conjunction with (4) and 

the partial SC (8). All admissible children are then contained 

within these boundaries. Unfortunately, in the practically 

more relevant case of complex-valued constellations, 

admissible intervals cannot be specified. A solution for 

QAM constellations that is frequently found in the literature 

is to decompose the Mt-dimensional complex signal model 

into a 2Mt –dimensional real-valued problem according to 

 

          [
    

    
] =[

         

        
] [

    

    
]  + [

    

    
]           (10) 

                       

This approach results in a tree that is twice as deep as the 

original tree (corresponding to the complex-valued 

formulation) with a smaller number of children per node. 

The number of leaves remains unchanged. However, we will 

argue later that performing SD directly on the complex 

constellation is more efficient in VLSI implementations. 

 

D. Optimum Ordering 

      With radius reduction, it is desirable to find candidate 

solutions that lie close to the ML solution as early as 

possible in order to shrink the sphere as fast as possible and 

hence expedite the tree pruning. A scheme proposed by 

Schnorr and Euchner [17] and modified for the finite lattice 

case in [15] traverses the members of the admissible sets in 

ascending order of their PEDs. In the case of real-valued 

lattice constellations, given a starting point and an initial 

direction, this ordering is predefined. The decoder starts 

with the center of the admissible interval and proceeds to the 

boundaries in a zigzag fashion. As shown in [15], there is no 

need to explicitly compute the boundaries; instead, due to 

the Schnorr–Euchner (SE) ordering, it is sufficient to 

terminate once the SC is violated. In the case of complex-

valued constellations, SE ordering is still possible even 

without the real-valued decomposition (10). However, 

depending on the constellation, no obvious predefined order 

may exist. Hence explicit sorting of the admissible children 

by their PEDs may be required, incurring a high 

implementation complexity. 

 

IV. TYPICAL LATTICE DECODER FOR MIMO DETECTION 

A. Lattice Decoder 

A typical lattice decoder for MIMO detection consists of 

a pre-processing unit, a pre-decoding unit and a decoding 

unit, as shown in Fig. 4. The preprocessing unit takes the 

estimated channel matrix H, and generates its inverse H
-1

, a 

triangular matrix L, and a correspondingly optimal ordering 

p if needed. The task of the pre-decoding unit is simply to 

generate a zero forcing (ZF) point z = (H
-1

x)
T
 as an initial 

estimate for the decoding unit. The computational 

complexity of the pre-decoding unit is omitted in the 

following complexity analysis for all the lattice decoders. 

The differences among various lattice decoders for MIMO 

detection depend largely on the design of the decoding unit. 

 

 
Fig. 4. Typical Lattice Decoder [20] 

In a lattice decoder, an n=2 M-dimensional lattice is 

decomposed into n sublattices. Let k be the dimension of the 

sublattice that is currently being investigated, and y the 

orthogonal distance between two points in the adjacent sub 

lattices. The objective of the decoder is to search for the 

lowest possible squared distance bestdist between (k=n)-

dimensional and (k=1)-dimensional sublattice [12]. 

In theory, the BER performance of the SE and the SD 

algorithms should be the same for MIMO detection, since 

the difference between the SE and the SD lies in the 

searching order among the sublattices [12]. According to the 

searching direction instead, the lattice decoders can be 

divided into two types, the depth-first type with variable 

throughput and the breadth-first type with fixed throughput. 

 

B. Breadth first algorithm 

Instead of the metric-first and depth-first mixed 

searching scheme, the breadth-first searching scheme can 
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also be employed for MIMO detection. The breadth-first 

algorithm searches for the bestdist in the forward direction 

only, but the best K candidate newdist are kept at each level 

of the sublattice. Hence, the breadth-first algorithms can 

result in a constant decoding throughput. A strict breadth-

first algorithm should keep K as large as possible without 

compromising on the optimality, compared with the 

exhaustive-search ML algorithm. However, limiting K can 

reduce the complexity of the breadth-first algorithm [18] 

[21] [22] that is called K-best algorithm. The bit-error rate 

(BER) performance of the K-best algorithm is expected to 

be close to that of the ML algorithm if K is sufficiently 

large, as in the well-known M-algorithm for sequential 

decoding.  

The principle of the K-best type of algorithm is outlined as 

below. 

1. At the root sublattice, initialize one path with metric 

zero. 

2. Extend each survivor path, retained from the previous 

sublattice, to Mc contender paths, and update the 

accumulated metric for each path. 

3. Sort the contender paths according to their accumulated 

metrics, and select the K-best paths. 

4. Update the path history for each retained path, and 

discard the other paths. 

5. If the iteration arrives at the end sublattice, stop the 

algorithm. Otherwise, go to Step 2. 

The best path at the last iteration is, thus, the hard decision 

output of the decoder. The advantage of the K-best 

algorithm over the sequential algorithm is its fixed 

throughput, since it is easily implemented in a parallel and a 

pipelined fashion. 

 

C. Modified Breadth first algorithm 

This algorithm provides more efficient way to implement 

considering set of all points in accountable set. The 

algorithm (for e.g. is for r=R radius) consists of following 

steps 

 

1. Taking center of sphere, find distance of all points in 

accountable sets. The point with largest distance is 

considered apex point (say A) for tree search. 

2. Now taking radius r=R1 (R1<R), draw sphere from 

center and then consider all points lying within r=R1 

(say hl1). Find distance of all this points from A. The 

point with minimum distance is selected and other 

points are pruned. 

3. Continue the process with r=R2 (R2<R1<R) and find 

minimum metric point. 

4. Continue the process until most likelihood solution is 

obtained. 

V. HARDWARE IMPLEMENTATION OF MIMO DECODERS 

       Fig. 5 shows the uncoded BER performance of the k-

Best algorithm for K=5 compared to the ML algorithm. 

Three observations can be made: First, the figure shows a 

significant BER performance loss in the high SNR regime. 

However, in the range of interest (16-20 dB) the loss is 

small. Furthermore, Simulations of coded BER showed 

good results with K=5; also, it is stated that K=5 is 

reasonable. Second, fig. 5 clearly shows a BER performance 

advantage of the RVD algorithm compared to operating 

directly on the complex valued constellation points. Third, 

the simplified norm k-Best algorithm (l
1
-norm) leads to 

almost the same BER performance as the squared l
2
-norm k-

Best algorithm. 

 

A. K- Best Architecture 

The K-Best detector is pipelined such that one layer of the 

tree is always processed in one pipeline stage (Fig. 6). Each 

stage consists of a metric computation unit (MCU), a K-Best 

unit (KBU) that determines the K smallest PEDs, and a 

Register bank Lk where the K smallest nodes of the previous 

layer are stored. Together, they form a computation unit. 

Resource sharing is applied such that the K nodes at the 

input of the stage are processed one after the other. In each 

cycle the MCU delivers the PEDs of all children of a parent 

node in Lk .These PEDs need to be sorted into a list   
̅̅ ̅ 

where the K smallest PEDs found so far are stored. After K 

iterations, all children of the nodes in Lk have been 

computed by the MCU. The KBU has determined the K 

smallest PEDs and delivers them to the next pipeline stage. 

In total, 2MT almost identical copies of the computation unit 

form the 2MT pipeline stages of the detector. 

 

 

 
Fig. 5. Uncoded BER performance comparison between ML 

algorithm and different alternatives of k-Best algorithm [23] 

 

 
Fig. 6. One of 2MT pipeline stages of the K-best VLSI 

architecture [23]. 

 

       In hardware implementation, depth-first is realized in a 

folding-like architecture because only one node is visited at 

a time during the tree search process.  In this case, an extra 

memory to record the visited nodes is required, for the trace-

back operation. K-best is realized in a multi-stage pipelined 

way, because no trace-back is needed. To process  K  data  

paths  at  the  same  time,  parallel  architecture  is  applied.  

Fig.7 illustrates  the  basic  architectures  of  these  two  

search  schemes,  and  Table  1 summarizes their 

comparison in terms of circuit metrics and algorithmic 

performance. 
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For the sphere decoder operating with a large antenna array, 

the biggest challenge in the implementation is reducing area 

of the design.  Using  the number of (complex) multipliers  

as  a  first  order  area  estimate,  the  number  of  multipliers 

needed  in  the folding  and  multi-stage  architectures  are 

M and M(M+1)/2,  respectively , where M is the number of 

transmit antennas. Expanding a 4x4 system to a 16x16 

system, relative area  increases  from  4  to  16  for  the  

folding  architecture  and  10  to  136  for  the multi-stage  

architecture. To  keep  the  area within  a  reasonable  value,  

folding  technique  is  considered. The second design 

challenge is operating frequency for the folded architecture. 

 

 
Fig. 7. Basic architecture of (a) depth-first and (b) K-Best 

algorithm [11]. 

 

Table 1. Comparison of depth-first and K-best Algorithm 

 
 

 
Area Through 

put 

Latency Radius 

Shrinking/ 

Tree 

Pruning 

Perform

ance 

Depth-
first 

Small Variable Long Yes ML 

K-best Large Constant Short No Near-ML 

 

 
Fig. 8. Design challenge and tradeoff for large antenna size. 

Impact of antenna array size on (a) area and (b) critical path 

delay [11]. 

 

      The K-Best detector is pipelined such that one layer of 

the tree is always processed in one pipeline stage (Fig. 8). 

Each stage consists of a metric computation unit (MCU), a 

K-Best unit (KBU) that determines the K smallest PEDs, 

and a Register bank Lk where the K smallest nodes of the 

previous layer are stored. Together, they form a computation 

unit. Resource sharing is applied such that the K nodes at 

the input of the stage are processed one after the other. In 

each cycle the MCU delivers the PEDs of all children of a 

parent node in Lk .These PEDs need to be sorted into a list 

  
̅̅ ̅ where the K smallest PEDs found so far are stored. After 

K iterations, all children of the nodes in Lk have been 

computed by the MCU. The KBU has determined the K 

smallest PEDs and delivers them to the next pipeline stage. 

In total, 2MT almost identical copies of the computation unit 

form the 2MT pipeline stages of the detector. 

 

Table 2. Implementation of k- Best Algorithm for 4x4 

systems with 16- QAM Modulation (without pre-

processing) 

 
Reference Proposed architectures 

[23] 

[18] [17] [24] 

Technology 

[μm] 

0.25 0.35 0.35 0.25 

Norm l2 l1 l2 l2 l2 

K 5 10 5 10 5 10 10 

Core Area Sc1 90 132 68 110 91 52 2152 

Core Area Sc2 115 157 93 135 

Throughput 
[Mb/s] 

376 80 424 83 53 10 40 

Loss compared 

to ML [dB] 

0.4 0.1 0.75 0.4 0.4 0.1 0.1 

Latency [cycles] 49 89 49 89 240 1280 320 

Max.clock[MHz] 117 50 132 52 100 100 100 

VI. CONCLUSION 

This paper includes different techniques of MIMO Detection 

and from survey we can conclude that K-Best Algorithm 

with sort free method gives best result keeping in mind 

hardware implementation and BER is close to that of 

Maximum Likelihood (ML) solution. We can further 

decrease area and power consumption by using selective 

multipliers and better combination of adders and shifters. 

We can also use better tree search algorithms keeping in 

mind sphere used for decreasing computation complexity. 
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