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 
 

Abstract — A rigorous method for solving 2D scattering by an 

arbitrary perfectly conducting inclusion located in the region of 

a rectangular waveguide T-junction is presented. This method is 

developed from the approach based on the Green’s theorem. The 

latter is simultaneously the wave equation and the boundary 

conditions on the scatterer surface. The proposed method is 

illustrated by results obtained for a thick septum located inside 

the interaction region. Such approach can be applied for 

optimization of waveguide junctions.generalized using special 

weighting functions satisfying  

 

Index Terms— Waveguide Junctions, Green’s Theorem, 

Microwave, Rectangular Waveguide. 

I. INTRODUCTION 

  The T-junction of two waveguides is an important element 

of waveguide tracts, which can be used as one of the key 

building blocks of various devices, e.g., power dividers, 

filters, multiplexers. The presence of extensive applications 

necessitates the development of methods for the study of such 

structures. 

The paper presents a rigorous solution for a 2D scattering 

problem of electromagnetic wave by a perfectly conducting 

inclusion of an arbitrary cross section shape within an 

interaction region of rectangular waveguide T-junction. In 

Fig. 1 the interaction region is bounded by line segments 

0 1 2 3, , ,L L L L , and the scatterer surface SL . This model can 

be applied for optimizing the transmission properties of 

waveguide junctions by placing rods or septums. 

The approach proposed is based on the Green’s theorem 

method, which has been previously successfully applied to 

characterization of different T-junctions of rectangular 

waveguides. E.g. in [1] the problem is solved using the 

appropriate integral equation of the residue theory and the 

weighting functions, which were chosen so as to identically 

satisfy Helmholtz equation in the inhomogeneous region of 

the waveguide junction. The characteristic feature of our 

approach is that we choose the weighting functions in such 

manner that they automatically take into account the presence 

of the perfectly electric conducting (PEC) inclusion. More 

precisely, the system of wave functions is found from 

solutions of the three auxiliary problems for scattering by the 

inclusion in short-circuited waveguides. 
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Fig. 1. The structure under study: rectangular waveguide 

T-junction containing a PEC scatterer. 

 

 

A simple system of algebraic equations for determining the 

amplitudes of scattered fields in the waveguides can be 

obtained. To this aim only one propagating mode is taken into 

account in one of the waveguides and the scattering 

coefficients are found by using the three-short method [2, 3], 

which enables us to obtain the scattering coefficients with 

high accuracy. With this approach, one can construct the 

complete scattering matrix in a closed form for an arbitrary 

number of waveguide modes [4]. Thus, this paper presents the 

further development of the Green's theorem method for the 

case when the T-shaped interaction region of two variously 

sized rectangular waveguides is loaded with an E-plane 

perfectly conducting septum. 

II. FORMULATION OF THE PROBLEM 

 

For definiteness, we restrict our consideration to the 

analysis of LM  waves in the E -plane of the waveguide 

junction [5]. The time dependence is assumed in the form 

exp( )i t  . For this type of waves the nonzero component 

( , , )xE x y z
 
of the electric field can be presented in the 

following form: 

( , , ) cos ( , )x

m
E x y z x W y z

a

 
  

 


.                            (1) 

The other projections of the electromagnetic field are written 

as follows: 
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where a  is the common dimension of the waveguides. We 

assume that the x mode order 0,1,2,...m   is fixed. 

Function ( , )W y z  satisfies the Helmholtz equation 

 
2

,( ) ( , ) 0,y z K W y z                                           (2) 

and zero boundary conditions on the PEC walls of the 

waveguide and contour sL  of the scatterer S . Here, 

2 2 1/2[ ( / ) ]K k m a    is the effective wavenumber, k  

is the wavenumber of the waveguide filling. In regular regions 

( )A y b , ( 0)B z   and ( )hC z b , function 

( , )W y z  is represented as 

 

 

 

1

1

1

exp[ ( )] exp[ ( )] sin ,

exp[ ] exp[ ] sin ,  (3)

exp[ ( )] exp[ ( )] sin ,

A in sc
n n n n

hn

B in sc
n n n n

n

C in sc
n n h n n h

n

n
W A i y b A i y b z
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n
W B i z B i z y

b

n
W C i z b C i z b y
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where 
in
nA ,

in
nB ,

in
nC  and 

sc
nA ,

sc
nB ,

sc
nC  are the amplitude 

coefficients of the incident and scattered waves; 
2 2 1/2[ ( / ) ]n hK n b    and 

2 2 1/2[ ( / ) ]n K n b    are the longitudinal 

wavenumbers of the respective waveguides. 

It is necessary to define the scattering matrix elements 

( , , , )SIJ I J A B C , which are determined as 

 

,

,

.

  

  

  

sc in in in

sc in in in

sc in in in

A = SAA A + SAB B + SAC C

B = SBA A + SBB B + SBC C

C = SCAA + SCB B + SCC C
      

(3) 

Here we introduce the column vectors of the amplitudes of the 

incident and scattered waves { }in
A

in
nA , { }in

nBin
B , 

{C }in
nin

C ; {A }sc
A

sc
n , { }sc

nBsc
B , 

{ }sc
nCsc

C . 

Let’s introduce a solution to equation (3) in the 

inhomogeneous region ( , )W x y  that satisfies zero boundary 

conditions on the PEC surfaces: 

 
0

0; 0
SL LW W  ,                                             (4) 

Next we transform Helmholtz equation (3) inside the 

inhomogeneous region into the integral equation over the 

contour 0 1 2 3 sL L L L L L      of the said region by 

applying the second Green’s formula [6]: 

 0

L

W W
dL W W

N N

  
  

  
 ,                                 (5) 

where ( , )W y z , as before, is an arbitrary solution to Eq. (3) 

in the inhomogeneous region and / N   denotes the normal 

derivative at contour L . As W  we consecutively substitute 

the three solutions of the auxiliary problems for the main and 

the side (see Fig. 1) waveguides. 

Taking into account the boundary conditions (5) on the 

perfectly conducting segments 0L  and sL  of the integration 

contour the latter expression yields: 

1 2 3

0

L L L

W W
dL W W

N N
 

  
  

  
 .                           (6) 

 

Next, we particularize our model and consider first the 

auxiliary problem, which represents the main waveguide 

containing the scatterer S  in the form of a rectangular 

septum (see Fig. 2a). This model can formally be obtained 

from the structure presented in Fig. 1 if we consider the upper 

section of line 1L  to be PEC. Let the scatterer in this auxiliary 

waveguide is excited by the mode of order 1,2,...q   

propagating from z    (port B). In this case, solution 

outside the scatterer ( , ) ( , )B
qW y z W y z  in region 

3 2z z z   is 

2,

3,

,
( , )

,

in sc
B BBB

q sc
CB

W W z z
W y z

W z z

  
 



.                             (7) 

 

in equation (7) we have introduced the following notations for 

the waves: 

 

 

 

 

2 2

2 2

0

3 3

0

exp[ ( )]sin , ,

exp[ ( )]sin , ,

exp[ ( )]sin , .


















 
   

 

 
    

 

 
   

 





in

B q

sc BB

BB sq s

s

sc CB

CB sq s

s

q
W i z z y z z

b

s
W S i z z y z z

b

s
W S i z z y z z

b

   (8) 

 

As the second auxiliary problem, we consider the same 

main waveguide, but now assuming that the waveguide is 
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excited by the mode of order 1,2,...q   propagating from 

z    (port C). The solution outside the scatterer 

( , ) ( , )C
qW y z W y z  looks like 

3

2

, ,
( , )

, ,

in sc
C CCC

q sc
BC

W W z z
W y z

W z z

  
 

                      

 (9) 
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Fig. 2. The auxiliary structures: for the first and the second 

auxiliary problems (a); for the third auxiliary problem (b) 
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The third auxiliary problem is formulated for the structure 

formally obtained from Fig. 1 if the segments 2L  and 3L  are 

assumed to be PEC (see Fig. 2b). Let the wave of mode order 

1,2,...q   propagates from the side y    (port A). In 

this case the solution outside the scatterer 

( , ) ( , )A
qW y z W y z  for the region 1y y  can be written  

 

in the form 

1

1

, ,
( , )

, 0 .

in sc
A A AA

q

W W y y
W y z

W y y

  
 

 
                      (11) 

Here 

1 1

1 1

1

exp[ ( )]sin , ,

exp[ ( )]sin , .

in
A q

h

sc AA
AA sq s

s h

q
W i y y z y y

b

s
W S i y y z y y

b





 
    

 

 
   

 








.(12) 

Note that in (8), (10), and (12) ( , , , )IJS I J A B C  are 

elements of the scattering matrices, which are defined during 

the auxiliary problems solution.  

Here we introduce the column vectors of the incident and 

scattered waves amplitudes: { }in
nAin

A , { }in
nBin

B , 

{ }in
nCin

C ; { }sc
nAsc

A , { }sc
nBsc

B , 

{ }sc
nCsc

C . The scattering coefficients and the solutions 

of the auxiliary problems can be found using various 

numerical techniques, such as the mode-matching method [7], 

boundary contour mode-matching method [8], the moment 

procedure [9, 10]. Here we use mode-matching method in the 

partial domains with PEC boundary conditions at the metal 

surfaces and continuity conditions for ( , )W y z  and its 

normal derivative either /W z   or /W y   on the relevant 

apertures. 

Next, we substitute the found weight functions ( , )A
qW y z , 

( , )B
qW y z , ( , )C

qW y z  to the second Green’s formula (6) in 

place of W  and take into account the explicit form (4) for 

( , )W y z  in each of the interaction regions and impose the 

boundary conditions for W  and W  on the PEC surfaces. As 

a result we arrive to a direct formula for calculating the 

scattering amplitudes
sc
nA , 

sc
nB , 

sc
nC : 

 

1

1

1

[ ( ) ( )],

[ ( ) ],

[ ( ) ],

sc A in B in sc C in sc
q qn n qn n n qn n n

n

sc A in sc B in C in
q qn n n qn n qn n

n

sc A in sc B in C in
q qn n n qn n qn n

n

A R A R B B R C C

B P A A P B P C

C Q A A Q B Q C













       

      

      







(13) 

where 1,2,...q  , and the matrix coefficients have the form: 

                        1

1

exp[ ( )]
exp[ ( )] ,

qA AA
qn n n nq

q

i b y
R i b y S


  


 


                       

2

,
2

B AB
qn qn

h

b
R GW

b i
 
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2

0 0
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
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2
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The integrals on the right hand sides of the above 

expressions can be calculated in a closed form provided that 

, ,A B C
q q qW W W  are known. 

Next we substitute the second and third equations from (14) 

into the first equation thus eliminating { }sc
nB  and { }sc

nC . 

As a result we obtain the system of linear algebraic equations 

(SLAE) for the amplitudes of the scattered field in the side 

waveguide { }sc
A

sc

nA , which in matrix form looks like 

      sc A in B in C in
 (I D) A = U A U B U C .    (14) 

Here I – is identity matrix, and the other matrices appearing 

in (15) are defined as follows 

 

,

,

,

.

  

   

   

   

B A C A

A A B A C A

B B B B C B

C C B C C C

D = R P R Q

U = R R P R Q

U = R R P R Q

U = R R P R Q

 

The solution to SLAE (15) can be written in the form: 
-1      sc   A in B in C in

A = (I D) (U A U B U C ) .      (15) 

Comparing the solution (16) with the definition of the 

scattering matrix (13), we find expressions for the scattering 

matrix elements in the side waveguide ( )A y b  

                  

 

 

 

1

1 

1

,

,

.







 

 

 

AA A

AB B

 AC C

S = I D U  

S = I D  U

S = I D U
                       

(16) 

 

Using direct formulae (14-17) we obtain the elements of 

the scattering matrix in the main waveguide: 

 for scattering in port B of the main waveguide ( 0z  )  

                     

  ,

,

,

  

 

 

BA A AA

BB B A AB

BC C A AC

S P I  S

S P – P S

S P – P S

.                           (17) 

 for scattering in port C  of the main waveguide ( hz b )  

                    

,

,

.

  

  

  

CA A AA

CB B A AB

CC C A AC

S Q (I S )

S Q Q S

S Q Q S
                            

(18) 

III.  NUMERICAL EXAMPLES 

Let us consider a PEC rectangular septum of thickness t  

and height h , placed in the interaction region of the empty 

waveguides and, to be specific, fixed to the downside wall of 

the main waveguide (see insert in Fig. 3). We are interested in 

the complex elements of the scattering matrix 

( , , , )IJS I J A B C . The waveguide dimensions are 

8.64a cm , / 2 hb b a . Figs. 3, 4 illustrate 

frequency dependence of the reflection coefficient for 

01LM impinged from the port A  for various geometric 

parameters of the inclusion. In these figures the septum is 

placed symmetrically in the interaction region along the 

z-axis. 
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Fig. 3. The reflection coefficient for 01LM -mode at port A 

for different t . 
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Fig. 4. The reflection coefficient for 01LM -mode at port A 

for different h . 

 

The results of comparison of the scattering parameters in 

the cases of symmetrical (solid line) and asymmetrical (dash 

line) septum position in the interaction region are presented in 

Figs. 5, 6. The step dimensions were chosen as 0,5h b , 

0,2 ht b . 

Correctness of the numerical simulation was monitored by 

checking the balance of power in the ports of the T-junction. 

Accuracy of 10
-8

 was achieved in the considered frequency 

band using 12 modes. It takes less than a second to compute 

100 frequency points using the proposed method. The 

accuracy of the results those obtained by Ansoft HFSS is of 

the order 10
–2

...10
–3

 and the computation time is of order 

30-50 s. The algorithm allocates memory for about 20 

complex matrices of size 12x12. 

The results obtained by our method are compared with the 

data those obtained by Ansoft HFSS. Agreement within the 

bounds of HFSS method accuracy is achieved for all the 

considered cases. 
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Fig. 5. Transition coefficients into ports B, C for different 

septum positions 
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Fig. 6. Reflection coefficients for ports B, C for different 

septum positions. 

 

IV. CONCLUSIONS 

 

A universal method of rigorous analysis of metallic 

inclusions of arbitrary cross-section located in the interaction 

region of waveguide T-junction is proposed. This model can 

be used to optimize scattering properties of wave guide 

devices using rods or septums placed in waveguide junctions. 
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