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 

Abstract— Measuring of thin film properties is difficult when 

compared to bulk materials. A straight, horizontal cantilever 

beam exposed to free vibrations will vibrate at its characteristics 

or natural frequencies. In this research paper the vibrations of a 

thin film cantilever beams will be studied and the equations of 

vibrations will be derived. The frequency equations are solved 

using Matlab® to show the output frequencies and the mode 

shapes related to each frequency 

 

 
Index Terms—cantilever, the mode shapes 

I. INTRODUCTION 

  A cantilever beam is one of the most fundamental structural 

and machine components used in many different applications 

for decades. Cantilever beams are generally beams with one 

end fixed and the other end free. The length has a much larger 

dimension when compared with the width and depth. In 

addition, cantilever beams maybe straight or curved, with 

rectangular or circular cross sections. Figure 1.1 shows a 

cantilever beam with a rectangular cross section. 

 

 
Figure 1.1: Rectangular cantilever beam 

Cantilever beam design and shape depends on the 

application. Its size, material, and weight are different from 

one application to another. For example, one of the most 

common applications of a cantilever beam can be shown in 

figure (1.2) below. The “fixed wing” in meters is designed as 

a beam for some preliminary analysis to help lift the plane 

and make it fly [1] 

 
Figure (1.2) Source: Student Online Laboratory through 

Virtual Experimentation   

In Micro Electrical Mechanical Systems (MEMS), micro 

cantilever beams are used in radio frequency filters and 

resonator. Beams are exposed to different dynamic loads in 
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different applications. When a cantilever beam is exposed to 

a dynamic load, the load will excite the beam to vibrate at its 

characteristic, or natural, frequencies. Studying vibrations of 

cantilever beams are very important. It helps to determine the 

durability concerns (by analyzing dynamic stresses) and 

noise .This information used to reduce the discomfort and 

excessive stresses in different applications in which beams 

are essential components.  

 

Cantilever beams can be more than one layer, in many 

applications beams are coated with one or more layers. This 

is possible especially in MEMS applications. In these 

applications, we may need three layers. One of the MEMS 

examples is a beam coated with a piezoelectric material. This 

beam is usually called a “sandwich beam”. In this beam, two 

piezoelectric layers are used to coat the beam from both 

sides. As a result, exposing this beam to vibrate will lead to 

excite the piezoelectric materials to generate a voltage 

difference between the two piezoelectric layers. This voltage 

can be used in many applications to measure stress, strain, 

and get many useful outputs. Another example is a two layer 

cantilever beam, in which a beam is coated with a different 

material. For instance, an aluminum cantilever beam is 

coated with thin film zinc oxide to form a two layers 

cantilever beam. The coated Aluminum beam has different 

characteristics and frequency responses than single 

Aluminum beam. Frequency values will be changed after the 

beam has been coated. These changes can be used to measure 

different characteristics. For example, the modulus of 

elasticity for thin films cannot be measured using 

conventional methods, because measuring modulus of 

elasticity for zinc-oxide is very hard and almost impossible. 

This is due to the thickness of the film and its sensitive 

characteristics. Thus, using vibration analysis will help in 

measuring the modulus of elasticity for thin film materials 

[2]. 

As seen above, many applications exist for multi-layered 

beams. In this research paper, we will study the frequency 

behavior for a one- and a two-layer cantilever beam. The 

equations of motion, frequency and characteristic equations 

will be derived. Numerical results will be calculated to see 

the frequency differences between one and two layered 

beams. Different materials will be taken to compare the 

results. In addition, results and future work will be discussed 

at the end of this paper. 

II. LITERATURE REVIEW 

In this research our concerns are to calculate and explain the 

free vibrations of two-layer cantilever beams. However, to 

make it more obvious we will explain the vibration of a one 

layer cantilever beam before we move to a two-layer 

cantilever beam [2]. 

 In this way, we can see the difference in equations and 

characteristics when we move from one layer to two layer 

cantilever beams. Our calculations in both cases will depend 
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on free and un-damped vibration. Thus, the beam isn’t 

exposed to any external force. According to Gorman (1975) 

“In free vibration a beam undergoes oscillatory motion while 

free of any external forces, whereas in forced vibration the 

beam responds to a system of time varying external forces”. 

([2]-[4]). Free vibration of cantilever beams can happen in an 

infinite number of mode shapes, each mode has a discrete 

frequency.  

 

The first frequency which is the lowest one is associated with 

the first mode; the second frequency is associated with the 

second mode and so on. However, higher frequencies - third 

and above - are less significant. This is because they are 

difficult to excite and the number of points on the beam 

having zero displacement increase directly with the mode 

number. To get appreciable amplitude for the higher modes, 

much more energy is required in this case [5]. We will take a 

bulk material coated (covered) with thin film in our analysis 

even though the analysis will be valid for any kind of beams. 

A thin film is a layer of material ranging from fractions of a 

nanometer (monolayer) to several micrometers in thickness, 

and usually the act of applying a thin film to a surface is 

called thin-film deposition. For example, an Aluminum 

cantilever beam can be coated with Zirconate Titanate (PZT) 

thin film to form a two layers cantilever beam. Dealing with 

thin film materials needs more attention because thin films 

characteristics are changed rapidly, with non-linearity, and 

sensitivity. One important thing about dealing with double 

layer cantilever beam that the thin film beam stiffness should 

be different from the main beam (bulk material), so the 

frequency shift can be noticed ([5]-[7]).  

 

Two main methods are used to obtain the solutions for a free 

vibration cantilever beam. The first one depends on solving 

differential equations for the equilibrium between inertia 

forces and elastic restoring forces subject to boundary 

conditions. The second method called the energy method, 

this method depends on the fact that the sum of the potential 

energy and the kinetic energy is always constant. [2]. 

 

In the next chapter we will use the differential equation 

method to derive the equations for free vibration of a 

cantilever beam. These equations will be the main reference 

for the next chapters in which it will be used to derive the 

equations for two layers beam, and obtain the frequencies 

and mode shapes. 

III. CANTILEVER BEAM FREE VIBRATION THEORY 

A. Equation of Motion 

We assume a cantilever beam with length at least 20 times the 

average depth, and the beam vibrates transversely in the 

z-direction as shown in figure 2.1 below.  It makes the 

problem mathematically one dimensional with no torsional 

vibrations. We take a small differential beam element of 

length dl from the beam as shown in figure 2.2. By 

developing the free body diagram for this element, we can 

see that there is a shear force and a bending moment in both 

sides. These quantities vary along the beam with time (t). In 

addition, in free vibration case there is no force, p=zero 

([1]-[3]). 

 
 Figure 2.1: Cantilever beam  Figure 2.2: Differential 

beam element 

The summation of forces around the center line is:  
2

2

2

2
( ) . (1)

w
Fy m

t

V w
V V dx Adx

x t







 
   

 

  

Where   is the mass per unit volume and A is the cross 

sectional area, the beam is assumed to be under small 

vibrating amplitude; thus, the slope of the centerline 
w

x




 is 

everywhere small and 
l x

 


 
 as well. Cancelling terms 

and dividing by dx  (2.1) becomes:  

2

2
(2)

V w
A

l t


 
  
 

 

Take the moments about the center:  

0M   

( ) 0 (3)
M

M M dx Vdx
x


     


 

Cancelling terms and divided by dx , equation (2.3) 

becomes: 

(4)
M

V
l


 


 

Back to Euler-Bernoulli equation for linear elastic materials:  

2

2
(5)

w
M EI

l


 


 

Where 

2

2

w

l




 is the small slope curvature, E is the Young’s 

modulus of elasticity, and I the second moment of inertia 

area. Substituting (5) into (4) gives:  

2

2
( ) (6)

w
V EI

l t

 
 
 

 

Now substituting (6) into (2) gives: 
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2 2 2

2 2 2

4 2

4 2

( ) 0

0 (7)

w w
EI A

l l t

w w
EI A

l t





  
 

  

 
  

 
 

 

This is the equation of motion for homogeneous, constant 

cross section, and free vibration cantilever beam. Next, we 

will solve this equation for free vibration cantilever beam. 

IV. SOLUTION OF THE DIFFERENTIAL EQUATION  

Using the method of separation of variables we assume a 

solution of the form:  

( , ) ( ). ( ) (8)w l t X l Q t    

X: independent on time , Q: independent of position 

We rearrange equation (7) into two parts, one depends on 

position and the other depends on time:  
4 2

4 2

( ( ). ( )) ( ( ). ( ))X l Q t X l Q t
EI m

l l

 
 

 
 

Divide two sides by . ( ). ( )m X l Q t  we get:  

2 2

4 2

4 2

( ) 1 ( )
. . (9)

( ) ( )

EI X l Q t

mX l l Q t t

 

 
  

 
 

Each side is constant and equal to 
2  which is the natural 

frequency of the cantilever beam with real quantity, take the 

left side of the equation and rearrange it to become:  
4 2

4

( )
( ) 0

X l m
X l

l EI



 


 

2
4 (10)

m

EI


    

4  The corresponding non-dimensional frequency for 

infinite number of values. To determine   we will find the 

general solution for the differential equation (8). 

The general solution of equation (2.8) is given by:  

 

1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( ) (11)X l C l C l C l C l         

1 2( ) sin( ) cos( ) (12)Q t A t A t     

Because we are interested in finding l , we will calculate the constants C1, C2, C3, and C4 for equation (11) only. To find 

these constants and solve the equation, boundary conditions and initial conditions should be determined. However, the above 

equations are valid for any beam with arbitrary boundary conditions. In our case we will solve these equations using the 

boundary conditions for a cantilever beam [8] 

V. BOUNDARY CONDITIONS FOR A CANTILEVER BEAM IN FREE VIBRATION 

In this section we will derive the solution for the cantilever beam shown in figure 2.3 below. This 

beam has a length (L), a thickness (t), and a width (w).  

The solution here is for the one layer cantilever beam. We will use this solution to derive the solution for two-layer cantilever 

beams. Applying the following boundary conditions for this beam:  

a- At the fixed end the deflection (z) and the slope are zeros. 

(0, ) 0 (0, ) 0 (13)
w

w t t
l


   


 

b- At the free end the moment(M) and the sheer force(V) are zeros      

2 3

2 3
( , ) 0 ( , ) 0 (14)

w w
L t L t

l l

 
   

 
 

 

Figure (2.3): One layer cantilever beam  

Implement equations (13) and (14) into equation (8), we get X ( l ):  

2 3

2 3

(0, ) 0 (0, ) 0

( , ) 0 ( , ) 0

dX
X t t

dl

d X d X
L t L t

dl dl

  

   (15)  
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We will use the boundary conditions (15) to solve equation (11) by differentiating it three times. 

1 2 3 4

2
2

1 2 3 42

3
3

1 2 3 43

( ( ) sin( ) cosh( ) sinh( )) (16)

( sin( ) cos( ) sinh( ) cosh( )) (17)

( ( ) sin( ) cosh( ) sinh( )) (18)

dX
C cos l C l C l C l

dl

d X
C l C l C l C l

dl

d X
C Cos l C l C l C l

dl

    

    

    

    

     

     

 

Substitute the boundary conditions in equations (11) and (16) we get : 

1 2 3 4(0, ) 0 sin(0) cos(0) sinh(0) cosh(0)X t C C C C      

2 4 (19)C C    

0 1 2 3 40 ( cos(0) sin(0) cosh(0) sinh(0))l

dX
C C C C

dl
       

1 3 (20)C C    

Now substitute equations (19) and (20) with boundary conditions into equations (17) and (18) to get: 

2

1 2 1 22

1 2 1 23

0 sin( ) cos( ) sinh( ) cosh( ) (21)

3
0 cos( ) sin( ) cosh( ) sinh( ) (22)

l L

l L

d X
C L C L C L C L

dl

d X
C L C L C L C L

dl

   

   





       

       

 

These equations can be written in a matrix form:  

1

2

sin( ) sinh( ) cos( ) cosh( ) 0

cos( ) cosh( ) sin( ) sinh( ) 0

cL L L L

cL L L L

   

   

      
    

      
 

To solve this matrix we will take the non-trivial solution at the resonant frequency in which the determinant of the matrix must 

equal to zero; thus:  
2 2 2 2sinh ( ) (sin ( ) cos ( )) 2cos( )cosh( ) cosh ( ) 0L L L L L L           

1 cos( )cosh( ) 0 (23)L L     

0  ,   0  (No vibration when the beam at rest) negative  (Negative values lead to redundancy) 

This is a non-linear equation with infinite number of roots (i.e. continuous system). Solving this non-linear equation (** See 

Appendix-A) we get: 

1.875,4.6904,7.548,..................................L   

Back to equation (2.10) and rearrange it for : 

2

2

( )
(24)

L EI

L A





   

Where: EYoung modulus of elasticity ( Pa ) 

  
31

12
I bt   Moment of inertia-Area for a rectangular cross-section (

4m ) 

   Mass density (
3/Kg m ) 

  .A t b   Area of the cross section (
2m ) 

  , ,L b t   Length, width, and thickness respectively 

This equation computes the frequencies for a one layer cantilever beam. Infinite number of frequencies can be calculated using 

this equation. In the next section we will derive the equation for a two-layer cantilever beam [10]. 

VI.  VIBRATION OF A TWO LAYER CANTILEVER BEAM 

We discussed the vibration for one layer cantilever beam,but 

many recent applications use more than one layer in which 

the beam is coated to become a composite material. 

 

 

 We will get a new material that is different from the old 

material. This is very helpful in many applications like 

automotive engineering, MEMS and NEMS, and biomedical 

equipment. The use of composite materials can reduce 

weight, increase efficiency and improve output response. As 
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a result, instead of using Steel for a cantilever beam, we can 

use two other materials (composite) and get the desired 

output. In our case get the same frequency response.  

 Thin film materials usually in micros-meters or even 

nano-meters are using to coat other materials, in this case we 

will take a beam coated with a thin film to form a new two 

layer beam as shown in figure (2.4) below [9].  The new beam 

will have new characteristics and new specifications. This 

two layer beam has two materials. Each material has different 

density, and Young modulus of elasticity. In addition, inertia 

and thickness differ from each layer to the other. Both layers 

still have the same length and width, and both of them will 

vibrate at the same frequency. 

 
Figure (2.4): Thin film cantilever beam 

Both materials will vibrate at the same frequency, so the 

frequency will be shifted to a new value (i.e. modified). This 

frequency shift will be very small, because the thin film is in 

micro-scale. We will take the case of a two layer beam and 

derive the necessary equations. More layers can be added 

easily and implemented to the equations. 

Lets take the beam in figure (2.4), where (f) stands for the 

thin film and (b) stands for the coated beam (bulk), the beam 

has: 

 b Density of the bulk material in (
3/Kg m  ) 

 
f Density of the thin film material in (

3/Kg m  ) 

 bE   Young Modulus of Elasticity for the bulk material 

( Pa ) 

 
fE   Young Modulus of Elasticity for the thin film 

( Pa ) 

 ,f bt t   Thin film thickness and Bulk material thickness 

respectively (m) 

Back to frequency equation (2.24), the modulus, inertia, and 

density will become:  

 
1 1

1

( ) (25)
N

k

k k

k

I b h h 



   (Qatu &Leissa, 2011, 

p375) 

3 3

1
11 11

1

( ) (26)
3

N
k k k

k

h h
D bQ 




   (Qatu &Leissa, 

2011, p375)   23 32
11 11

1k v v
Q E

 
  

 
       (Qatu 

&Leissa, 2011, p367) 

12 21 23 32 31 13 21 32 131 2v v v v v v v v v        ;   

12 21 23 32 31 13, , , , ,v v v v v v   The poisson’s ratios   

Where 11I   is the modified mass per unit length, 
11

kQ  is the 

material Elasticity, and N is the number of layers. These are 

the general equations for any number of layers, in our case for 

a two-layer beam, we will substitute N=2, so equations (25) 

& (26) become:  
2

1 1

1

( )k

k k

k

I b t t 



   `  

1 1 0 2 1( )( ) ( ) (27)b fI b t t t t          

Where  0 1 2, ,t t t  are shown in figure (2.5) 

 
Figure (2.5): Two layers cantilever beam thickness 

The new modulus of elasticity will be:  
3 32

1
11 11

1

( )
3

k k k

k

t t
D bQ 




  

3 3 3 3
1 21 0 2 1

11 11 11( ) ( )
3 3

t t t t
D b Q Q

  
  

 
 

Because we are dealing with one direction only and for more 

simplicity, we consider 1 and 23 32, 0v v   .Thus, the 

equation becomes: 

3 3 3 3
1 21 0 2 1

11 11 11( ) ( ) (28)
3 3

t t t t
D b E E

  
   

 
 

Where E is the modulus of elasticity of each material, t is the 

layer thickness, and b  is the beam width. 

We can implement these equations now in the frequency 

equation (2.24) we obtained earlier 

2

11

2

1

( )
(28)

DL

L I


  

 
This is the frequency response for a two layer cantilever 

beam. We can add more layers by following the previous 

steps for two layers. 

VII. PROPERTIES OF THE MODE SHAPES 

After we define the equations for the frequency for both cases (one layer and two layer beams, 

we need to know the mode shapes of the frequencies. 
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There is infinite number of non-dimensional frequencies and eigen values for each problem. Back to equations (2.11), we can 

rearrange it for the eigen vectors to determine the corresponding eigen functions. (Leissa & Qatu, 2011, p.110), the equation 

will become: 

1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( ) (29)X l C l C l C l C l         

Using equations (2.19), (2.20), (2.21) and (2.22) for a cantilever beam and combined them we get: 

cosh( ) cos( )
( ) .[sinh( ) sin( )] cosh( ) cos( ) (30)

sinh( ) sin( )

l l
X l l l l l

l l

 
   

 

  
       

  
Where 

cosh( ) cos( )
0.734,1.018,0.999,..........

sinh( ) sin( )

l l

l l

 


 


  


 

So equation (30) becomes: 

 ( ) cosh( ) cos( ) .[sinh( ) sin( )] (31)X l l l l l          

 ( )X l  the characteristic function for each frequency 

Back to equation of motion (8): 

  
( , ) ( ). ( ) (8)w l t X l Q t 

 

This equation satisfies the boundary conditions in (13) and (14), which is the solution for each frequency; however, the general 

solution of the equation of motion is the sum of the characteristic vibrations (Volterra,1965, p.3.18) , thus (8) becomes  :  

1

( , ) ( )[ cos( ) sin( )]n n n n n n

n

w l t X l A w t B w t




 

1

cosh( ) cos( )
( , ) .[sinh( ) sin( )] cosh( ) cos( ) .[ cos( ) sin( )]

sinh( ) sin( )
n n n n n

n

l l
w l t l l l l A w t B w t

l l

 
   

 





 
      

 
  *The above equation (32) 

is the general solution for any number of modes (n) 

To determine the coefficients nA and nB  , we will use the initial conditions: (0, ) 0, (0, ) 0
w

w t t
l


 


 

Both parameters are constants and depend on these conditions. 

Thus, 

( , )

( , )

w l t

wherew
l t

l





 
 


 

0 l L   

It follows from equation (32) above: 

1

1

( ) ( )

(33)

( ) ( )

n n

n

n n n

n

A X l l

w B X l l






















 

These equations are analogous to the Fourier series expansions. Thus, both equations are determining the series expansions of 

the functions ( ), ( )l l   in terms of the characteristic functions nX  (Volterra & Zachmanoglou, 1965, p.318). 

 Finally, to find the constants nA  and nB  we make use of the orthogonality for the characteristic functions; thus, by 

integrating these equations with respect to ( )l  from 0 L , and multiplying by ( )nX l  we get the formulas for nA  and nB : 
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0

0

2
( ) ( )

(34)
2

( ) ( )

l

n n

L

n n

n

A l X l dl
L

B l X l dl
Lw















 (Volterra & Zachmanoglou, 1965, p.913) 

In the last equation we can eliminate  nB  , because it depends on the initial velocity, and in this case the beam starts at rest. 

Thus, nB =0. So for our calculations we will evaluate  nA  , because nA  depends on the initial position at t=0 only. 

In the next chapter we will evaluate the displacement caused by each mode, and the total initial displacement for different 

cantilever beams, as long as we will draw the mode shapes for each case using MATLAB program. 

 

VIII. EXAMPLES AND RESULTS 

MATERIAL PROPERTIES AND SELECTION 

 

 

We will introduce first some common materials properties. 

Determining the suitable material is very important in any 

cantilever beam design, because the material properties play 

a significant role in the output values and the whole beam 

vibration. Thin films are sensitive to circumstances and 

different external disturbances. Their properties are changed 

rapidly with instability. For instance, the density for a thin 

film material can be easily affected by temperature, and that 

results in changing the outputs and the related frequencies as 

well ([10]-[12]). 

In our calculations of beam vibration, we need to determine 

three main characteristics: beam dimensions (length, width, 

and thickness), Young Modulus of Elasticity, and material 

density. All of them are dependent on the application in 

which the beam will be used. For instance, in our experiment 

we will use a thin film cantilever beam, a beam coated with a 

thin layer; the dimensions will vary from micros to 

centimeters, also the density and the Elasticity should be 

chosen carefully. 

In the next table (3.1) we summarize some of the materials 

specifications. We concentrate on the density and the 

elasticity which is important for our calculations.  

 

Table (3.1): Materials properties 

 

 
Material Density   

(kg/m^3

) 

Young 

Modulus 

(GPa) 

Reference  

Aluminum (AL) 2700 70 CRC Materials 

Science and 

Engineering  

Handbook, p.46 

 

Silicon (Si) 2330 190 J.mater.Res,Vol.12,

No.1,Jan1997, p.59 

Copper (Cu) 8960 128 Mechanics of 

Materials 23(1996), 

p.314 

LEAD ZIRCONATE 

TITANATE (PZT) 

7750 10-40 IEEE Micro Electro 

Mechanical 

Systems Workshop, 

Jan-Feb 

1991,Nara,Japan, 

p.118 

 

STAINLESS 

STEEL(BULK) 

7900 200 Proceedings of 

IEEE,Vol 

70,No.5,May 1982, 

p.421 

STAINLESS STEEL 

(THIN FILM) 

7900 240 Thin solid films 

290-291(1996), 

p.363 

Platinum 21440   170 IEEE, Micro 

Electro Mechanical 

Systems Workshop, 

Feb 1990, Napa 

Vally, California, 

p.174 

SILICON NITRIDE 

(SIXNY), THIN 

FILM 

2843 

-2887 

85-105 Sensors and 

Actuators 

A,35(1992), 

p.153-159 

Titanium (Ti) 

(Bulk) 

4510 115 CRC Materials 

Science and 

Engineering 

Handbook, p.47 

Titanium (Ti) 

(Thin filn) 

4510 110 Thin Solid 

Films,270(1995), 

p.263 

   

It is very important to notice the difference in properties for 

the same materials. This table shows the common materials 

used in laboratories and experiments. For the best results we 

will choose the material with stable elasticity and 

density.These characteristics in the table are based on 

experiments, computer analysis, and other technologies; 

thus, there are differences in the same material. Also, as we 

note that materials may have two categories, one for bulk and 

the other for thin film. For instance, Stainless steel has a 

Young Modulus of 200 GPa for the bulk material, and 240 

GPa for the thin film.  

IX. CALCULATIONS AND RESULTS 

In this section we will calculate the frequencies and mode 

shapes for one and two layers beam with different materials 

selection. We will use MATLAB to implement the equations, 

calculate the frequencies, and plot the mode shapes [12]. 
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The program will calculate the frequencies in Hertz, and can 

plot up to six mode shapes. The first modes have larger 

values and the higher vibration modes are not shown.  

 Aluminum cantilever beam (one layer) 

For Aluminum we consider the following characteristics: 

 L= 0.12 m b=0.03 m t=0.002 m  

 E=70 GPa  =2700 
3/Kg m  

1. Natural Frequencies (Hz) 

 Mode shape (1) (Hz):  113.420 

 Mode shape (2) (Hz):  710.792 

 Mode shape (3) (Hz):  1990.239 

 Mode shape (4) (Hz):  3900.074 

 Mode shape (5) (Hz):  6447.102 

 Mode shape (6) (Hz):  9630.854 

 

 

2. Mode shapes  

 

 

Figure (3.1): Mode shapes for Aluminum beam 

Figure (3.1) below shows the displacement caused by each 

mode at t=0 as long as the total displacement for the beam. 

From these displacements it is obvious that modes higher 

than the third mode have a little effect on the total 

displacement. 

 

 Steel cantilever beam (one layer) 

For Steel we consider the following characteristics: 

 L= 0.12 m b=0.003 m t=0.002 m  

 E=210 GPa  =7850 
3/Kg m  

1. Natural Frequencies (Hz) 

 Mode shape (1) (Hz):  116.044 

 Mode shape (2) (Hz):  727.235 

 Mode shape (3) (Hz):  2036.279 

 Mode shape (4) (Hz):  3990.295 

 Mode shape (5) (Hz):  6596.244 

 Mode shape (6) (Hz):  9853.646 

 

 

The frequencies depend on the Young Modulus and the 

density for the material. 

2. Mode shapes 

 
Figure (3.2): Steel beam mode shapes 

 Aluminum coated with Zinc oxide thin film (two layers 

beam) 

For this beam we consider the following characteristics:

  

 
b fL L   0.12m 

b fb b  0.03m 

 bt  0.002m  
ft  0.00002m 

 70bE  GPa  111fE  Gpa 

 b  2700 
3/Kg m  

f  5680 
3/Kg m  

 

1. Natural Frequencies (Hz) 

  Mode shape (1) (Hz):  114.933 

  Mode shape (2) (Hz):  720.272 

  Mode shape (3) (Hz):  2016.782 

  Mode shape (4) (Hz):  3952.088 

  Mode shape (5) (Hz):  6533.085 

  Mode shape (6) (Hz):  9759.297 

Notice the slight difference after the Aluminum coated, 

because the thickness of the thin film is only 20 micrometers. 

2. Mode shapes  

Figure (3.3) below shows the mode shapes for a coated beam 

(two layers). It is so difficult to notice the changes. In 

addition the mode shapes amplitude is the same, in our work 

we don’t care about the amplitude, because we don’t have 

any damping system to change it; thus, it will be the same in 

all cases. 

 
Figure (3.3): Aluminum coated with Zinc oxide mode shapes 



 

International Journal of Engineering and Technical Research (IJETR) 

                                                                                                            ISSN: 2321-0869, Volume-2, Issue-11, November 2014   

                                                                                              312                                                         www.erpublication.org 

 Steel coated with Silicon nitride (two layers beam) 

For this beam we consider the following characteristics: 

  

 
b fL L   0.12m 

b fb b  0.03m 

 bt  0.002m  
ft  0.00002m 

 bE  210GPa  
fE  190Gpa 

 b  7850 
3/Kg m  

f  2330 
3/Kg m  

 

1. Natural frequencies (Hz) 

  Mode shape (1) (Hz):  117.451 

  Mode shape (2) (Hz):  736.054 

  Mode shape (3) (Hz):  2060.973 

  Mode shape (4) (Hz):  4038.684 

  Mode shape (5) (Hz):  6676.234 

  Mode shape (6) (Hz):  9973.138 

2. Mode shapes 

 
Figure (3.4): Steel coated with Silicon nitride mode shapes 

The last examples show the behavior for different cantilever 

beams according to the frequencies and mode shapes; the 

MATLAB which is shown in (*Appendix-B) computes the 

frequencies and mode shapes for any kind of cantilever beam 

from bulk materials to thin films. 

 

X. SUMMARY AND FUTURE WORK 

This research is concerned with the frequencies and mode 

shapes of a thin film coated cantilever beam exposed to free 

vibrations. Equations of frequency and mode shapes are 

derived and solved for different cantilever beams with 

different materials. For instance, it explained different cases 

for one and two layer beam, with different materials for each 

case. We used Mat-Lab® to find the frequencies and the 

mode shapes related to them, and compared the results for 

each case. This program is valid for any kind of beams with 

one or two layers and any kind of materials, the user select 

the program for one or two layer beam, and then enter the 

beam dimensions and properties, in a second the program 

calculate the frequencies and the attached mode shapes for 

each frequency.  

Studying the vibration for composite materials (i.e. two and 

more different materials) is very important for a lot of 

industries including manufacturing companies, and 

automotive. The cantilever beam is the main component used 

in many applications and industrial products. Automotive 

companies are always search for lightweight materials in 

their cars; lightweight materials and thin films are highly 

recommended for automotive industries because: 

1. It has less exhaust and it prevents high pollution 

2. Cost reduction 

3. Recycling and environmental friendly 

4. Maximize fuel efficiency 

5. Reducing vehicle weight  

Automotive industries are searching for lighter, stronger, 

safer, and more environmental friendly materials than current 

ones. However, studying the frequency responses for the 

materials is very important for automotive industries as long 

as the material itself. The automotive companies are 

concerned with reducing vibrations on the vehicle. 

Vibrations affect the vehicle durability, operation, and 

stability. Thus, knowing the vibration will help to make 

improvements and increase the vehicle durability. Beams 

generally and cantilever beams specially are one of the main 

components of the vehicles; thus, studying and analyzing the 

vibrations of these components are very important in the long 

term as long as the short term. 

A future work will be on measuring the frequencies for real 

beams in the laboratory and comparing the theoretical results 

with the practical ones. In addition, it is possible to find 

material properties that it’s hard to find in the basic ways, and 

see how the frequency changes with external disturbances 

and effects. 
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APPENDICES 

 APPENDIX-A:SOLVING NON-LINEAR EQUATION 

Solve the non linear equation1 cos( )cosh( ) 0L L    

Let x l  

cos( )cosh( ) 1x x    

From the identity 

cosh( ) cosh( )cos( ) sinh( )sin( )x iy x y i x y    

1 0 cosh( )cos( ) sinh( )sin( )i x y i x y     

1 cosh( (1 ))x i    

Let (1 )z x i  cosh(z)= -1 

From the identity cosh( )
2

z ze e
z


  

2z ze e    

2( ) 1 2z ze e    

2( ) 2 1 0z ze e    2( 1) 0ze    1ze    

Use the identity 

cos( ) sin( )ie i     z ie e   2z i n    

So, (1 ) 2x i i n    
2

1

i n
x

i

 



 

Take the conjugate 
2 2

2 2

n n
x i

    
   

Take the real part   
2

2

n
x

 
   , for n=0, 1, 2, 3, 

4……………….. 

 

 APPENDIX-B : MAT LAB CODES 

 

I. One Layer Cantilever Beam 

functionCbeam(~) 

% Cbeam.m Cantilever Beam calculations 

% HELP:  This script computes mode shapes and 

corresponding natural 

% 

clearall; 

clc; 

closeall; 

display 

('*******************************************

********************') 

display 

('*******************************************

********************') 

display ('Mohammad  Abu-Shams') 

display ('School of Engineering and 

Technology') 

display 

('*******************************************

********************') 

display 

('*******************************************

********************') 

display ('This program is ONLY for cantilever 

beams with a uniform rectangular cross 

section.') 

display ('This program computes mode shapes and 

crossponding natural')  

display ('frequencies up to 6 modes for a 

rectangular cantilever beam.')  

display ('The cross section should be 

rectangular, enter 1 if this is correct, other 

wise the program will be closed') 

display ('To see a quick example , enter 2') 

CS=input(' Enter your choice:   '); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 

if CS==1 

    W=input ('Enter Width of the beam in [m]: '); 

Th=input('Enter Thickness of the beam in [m]:'); 

    L=input ('Enter Length for the beam in [m]: 

'); 

    Ix=(1/12)*W*Th^3; 

    A=W*Th; 

disp    ('Material properties of the beam') 

disp    ('Do you know your beam material 

properties, i.eYoung"s modulus and density ?') 

    YA=input('Enter 1, if you do; enter 0, if you 

do not:  '); 

if YA==1 

    E=input ('Enter Young"s modulus in [Pa]:  

'); 

    Ro=input('Enter material density in 

[kg/m^3]:  '); 

else 

display ('Steel: E=2.1e+11 [Pa]; Ro=7850 

[Kg/m^3]  ') 

display ('Copper: E=1.2e+11 [Pa]; Ro=8933 

[Kg/m^3]  ') 

display ('Aluminum: E=0.69e+11 [Pa]; Ro=2700 

[Kg/m^3]  ') 

display ('Zinc-oxide: E=1.11e+11 [Pa]; Ro=5680 

[Kg/m^3]  ') 

display ('PZT: E=0.63-1.1e+11 [Pa]; Ro=7750 

[Kg/m^3]  ') 

        E=input ('Enter Young"s modulus in 

[Pa]:   '); 

        Ro=input('Enter material density in 

[kg/m^3]:  '); 

end 

elseif CS==2   

display('Quick Example') 

display('This is a rectangular steel beam ') 

display('Length=0.45 m; Width=0.04 m; 

Thickness=0.003 m;') 

    L=.45; W=.04; Th=.003; 

    A=W*Th; 

    Ix=(1/12)*W*Th^3; 

    E=2.1*1e11; Ro=7.85*1e3; 
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else 

    F=warndlg('WARNING: INVALID ENTRY !!!','!! 

Warning !!'); 

waitfor(F) 

display('Type in:>>Cbeam') 

pause(3) 

return 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%>>Modes<<%%%%%%%%%%%%%%%%%%%%%% 

display   ('How many modes and mode shapes would 

you like to evaluate ?') 

HMMS=input('Enter the number of modes and mode 

shapes to computed: '); 

if HMMS>=7 

disp('   ') 

warning('WARNING: Up to 6 mode shapes (plots) 

are displayed via this script'); 

disp('   ') 

end 

    Nm=3*HMMS; 

jj=1; 

whilejj<=Nm; 

betaNL(jj)=fzero(@(betaNL)cosh(betaNL)*cos(be

taNL)+1,[jj jj+3]); 

jj=jj+3;  

end 

 

index=(betaNL~=0); 

betaNLall=(betaNL(index))'; 

%fprintf('betaNL value is %2.3f\n', betaNLall); 

betaN=(betaNLall/L)'; 

k=1; 

wn=ones(1,length(betaN)); 

fn=ones(1,length(wn)); 

while k<=length(betaN); 

wn(k)=betaN(k)^2*sqrt((E*Ix)/(Ro*A)); 

fn(k)=wn(k)/(2*pi); 

fprintf('Mode shape # %2f corresponds to nat. 

freq (fn): %3.3f\n', k, fn(k) ); 

    k=k+1; 

end 

 

x=linspace(0, L, 180); 

xl=x./L; 

sigmaN=zeros(1, HMMS); 

for ii=1:HMMS; 

    

sigmaN(ii)=(sinh(betaN(ii)*L)-sin(betaN(ii)*L

))/(cosh(betaN(ii)*L)+cos(betaN(ii)*L)); 

end 

Tc='(cosh(betaN(ii).*x(jj))-cos(betaN(ii).*x(

jj)))-sigmaN(ii).*(sinh(betaN(ii).*x(jj))-sin

(betaN(ii)*x(jj)))'; 

Xnx=zeros(length(betaN),length(x)); 

 

for ii=1:length(betaN) 

forjj=1:length(x) 

Xnx(ii,jj)=eval(Tc); 

end 

end 

% 

% Plot mode shapes; 

% 

MMS=HMMS; 

if MMS==1 

plot(xl,Xnx(1,:), 'b-') 

title('Mode shape of the Cantilever beam') 

legend('Mode #1', 0); xlabel('x/L'); 

ylabel('Mode shape X_n(x)'); grid 

holdoff 

elseif MMS==2 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-');grid 

title('Mode shapes of the Cantilever beam') 

legend('Mode #1', 'Mode #2', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff; 

elseif MMS==3 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-');grid 

title('Mode shapes of the Cantilever beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff; 

elseif MMS==4 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-') 

plot(xl,Xnx(4,:), 'c-'); grid 

title('Mode shapes of the Cantilever beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 'Mode 

#4', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff; 

elseif MMS==5  

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-') 

plot(xl,Xnx(4,:), 'g-') 

plot(xl,Xnx(5,:), 'k-') 

grid 

title('Mode shapes of the Cantilever beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 'Mode 

#4', 'Mode #5', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff 

elseif MMS>=6 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-') 

plot(xl,Xnx(4,:), 'g-') 

plot(xl,Xnx(5,:), 'k-') 

plot(xl,Xnx(6,:), 'c-') 

grid 

title('Mode shapes of the Cantilever beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 'Mode 

#4', 'Mode #5','Mode #6', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff 

 

end 

 

end 

 

 

II. Two Layer Cantilever Beam  

functionCbeam(~) 

% Cbeam.m Cantilever Beam calculations 

% HELP:  This script computes mode shapes and 

corresponding natural for 

% beam with two layers (coated beam)  

% 

clearall; 

clc; 

closeall; 

display('************************************

***************************') 

display('************************************

*** ************************') 

display('Mohammad  Abu-Shams') 

display('School fo Engineering and Technology') 

display('************************************

***************************') 

display('************************************

***************************') 

display('This program computes mode shapes and 

crossponding natural')  

display('frequencies up to 6 modes for a two 

layers cantilever beam,')  
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display('(the main beam (s) is coated with a thin 

film layer (f)).')  

display('Mechanical properties and geometry 

size of the coated cantilever beam')  

display('should be specified by the user') 

display('Prepare to input the following 

proparities: Length,width,thickness(Thf),') 

display('thickness(Ths),Young Modulus (Es and 

Ef),density (Ros and Rof)') 

 

display('The cross section should be 

rectangular, enter 1 if this is correct, other 

wise the program will be closed') 

CS=input('Enter your choice:  '); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

if CS==1 

    W=input('Enter Width of the beam in [m]: '); 

Ths=input('Enter Thickness of the main beam (s) 

in [m]:'); 

Thf=input('Enter Thickness of the thin film 

layer (f) in [m]:'); 

    L=input('Enter Length of the whole beam in 

[m]: '); 

    As=W*Ths; 

Af=W*Thf; 

disp('Material properties of the beam') 

disp('Do you know your beam"s material 

properties, Young"s modulus and density ?') 

    YA=input('Enter 1, if you do; enter 0, if you 

dont:  '); 

if YA==1 

Es=input('Enter Young"s modulus in [Pa] for (s) 

beam:  '); 

Ros=input('Enter material density in [kg/m^3] 

for (s) beam:  '); 

Ef=input('Enter Young"s modulus in [Pa] for (f) 

beam:  '); 

Rof=input('Enter material density in [kg/m^3] 

for (f) beam:  '); 

else 

display('Steel: E=2.1e+11 [Pa]; Ro=7850 

[Kg/m^3]  '); 

display('Copper: E=1.2e+11 [Pa]; Ro=8933 

[Kg/m^3]  '); 

display('Aluminum: E=0.69e+11 [Pa]; Ro=2700 

[Kg/m^3]  '); 

display('Zinc-oxide: E=1.11e+11 [Pa]; Ro=5680 

[Kg/m^3]  '); 

display('PZT: E=0.63-1.1e+11 [Pa]; Ro=7750 

[Kg/m^3]  '); 

Es=input ('Enter Young"s modulus in [Pa] for (s) 

beam:  '); 

Ros=input('Enter material density in [kg/m^3] 

for (s) beam:  '); 

Ef=input ('Enter Young"s modulus in [Pa] for (f) 

beam:  '); 

Rof=input('Enter material density in [kg/m^3] 

for (f) beam:  '); 

end 

else 

    F=warndlg('WARNING: INVALID ENTRY !!!','!! 

Warning !!'); 

waitfor(F) 

display('Type in:>>Cbeam') 

pause(3) 

return 

end 

    y 

=(Es*Ths^2+Ef*(2*Ths*Thf+Thf^2))/((2*Es*Ths)+

(2*Ef*Thf)); 

    Is =((1/12)*W*(Ths^3)) + 

W*Ths*(y-(Ths/2))^2; 

    If=((1/12)*W*(Thf^3)) + 

W*Thf*((Thf/2)+Ths-y)^2;    

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%<<Modes>>%%%%%%%%%%%%%%%%%%% 

display   ('How many modes and mode shapes would 

you like to evaluate ?') 

HMMS=input('Enter the number of modes and mode 

shapes to computed: '); 

if HMMS>=7 

disp('   ') 

warning('NOTE: ONLY 6 mode shapes (plots) are 

displayed via the script.'); 

disp('   ') 

end 

    Nm=3*HMMS; 

jj=1; 

whilejj<=Nm; 

betaNL(jj)=fzero(@(betaNL)cosh(betaNL)*cos(be

taNL)+1,[jj jj+3]); 

jj=jj+3;  

end 

 

index=(betaNL~=0); 

betaNLall=(betaNL(index))'; 

%fprintf('betaNL value is %2.3f\n', betaNLall); 

betaN=(betaNLall/L)'; 

k=1; 

wn=ones(1,length(betaN)); 

fn=ones(1,length(wn)); 

while k<=length(betaN); 

wn(k)=betaN(k)^2*(sqrt((Es*Is+Ef*If)/(Ros*As+

Rof*Af))); 

fn(k)=wn(k)/(2*pi); 

fprintf('Mode shape # %2f corresponds to nat. 

freq (fn): %3.3f\n', k, fn(k) ); 

    k=k+1; 

end 

 

x=linspace(0, L, 180); 

xl=x./L; 

sigmaN=zeros(1, HMMS); 

for ii=1:HMMS; 

    

sigmaN(ii)=(sinh((betaN(ii)*L))-sin(betaN(ii)

*L))/(cosh(betaN(ii)*L)+cos(betaN(ii)*L)); 

end 

Tc='(cosh(betaN(ii).*x(jj))-cos(betaN(ii).*x(

jj)))-sigmaN(ii).*(sinh(betaN(ii).*x(jj))-sin

(betaN(ii)*x(jj)))'; 

Xnx=zeros(length(betaN),length(x)); 

 

for ii=1:length(betaN) 

forjj=1:length(x) 

Xnx(ii,jj)=eval(Tc); 

end 

end 

% 

%Plot mode shapes; 

% 

MMS=HMMS; 

if MMS==1 

plot(xl,Xnx(1,:), 'b-') 

title('Mode shape of the coated Cantilever 

beam') 

legend('Mode #1', 0); xlabel('x/L'); 

ylabel('Mode shape X_n(x)'); grid 

holdoff 

elseif MMS==2 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-');grid 

title('Mode shapes of the coated Cantilever 

beam') 

legend('Mode #1', 'Mode #2', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff; 

elseif MMS==3 
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plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-');grid 

title('Mode shapes of the coated Cantilever 

beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff; 

elseif MMS==4 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-') 

plot(xl,Xnx(4,:), 'c-'); grid 

title('Mode shapes of the coated Cantilever 

beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 'Mode 

#4', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff; 

elseif MMS==5  

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-') 

plot(xl,Xnx(4,:), 'g-') 

plot(xl,Xnx(5,:), 'k-') 

grid 

title('Mode shapes of the coated Cantilever 

beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 'Mode 

#4', 'Mode #5', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff 

elseif MMS>=6 

plot(xl,Xnx(1,:), 'b-'); hold on 

plot(xl,Xnx(2,:), 'r-') 

plot(xl,Xnx(3,:), 'm-') 

plot(xl,Xnx(4,:), 'g-') 

plot(xl,Xnx(5,:), 'k-') 

plot(xl,Xnx(6,:), 'c-') 

grid 

title('Mode shapes of the coated Cantilever 

beam') 

legend('Mode #1', 'Mode #2', 'Mode #3', 'Mode 

#4', 'Mode #5','Mode #6', 0) 

xlabel('x/L'); ylabel('Mode shape X_n(x)') 

holdoff 

 

end 

 

end 

 


