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 

   Abstract—This paper presents an aircraft automatic landing 

controller that uses Particle Swarm Optimization technique to 

improve the performance of automatic landing system and guide 

the aircraft to a safe landing, and this paper demonstrate in 

detail how to employ the PSO to search efficiently the optimal 

PID controller parameters of an automatic landing system. 

    

 

Index Terms—Aircraft, flight control, ALS, PSO and PID 

control.  

I. INTRODUCTION 

 

    Most commercial aircraft currently have available an 

optional automatic landing system. The first ALS was made in 

England on june 10,1965 using a trident aircraft operated by 

the British airline BEA [1].  Since then, most aircraft have had 

this system installed. They are most often activated in clear, 

calm weather but can also be used in fog or rain. When they 

are used in place of a pilot it is usually for two reasons. First, 

automatic system give a reliably smother landing, leading to 

increased the passenger comfort and to reduction of wear on 

tires and landing gear. Second, their use in calm weather 

provides an important training function, accustoming pilots to 

a system that they must understand and trust if it to be used in 

adverse conditions in the future. In recently years, several of 

control techniques are applied to ALS to improve it, such as 

GNSS Integrity Beacons, Global Positioning System, 

Microwave Landing System, and Autoland Position Sensor 

[2,3,4,5]. By using improvement calculation methods and 

high accuracy instruments, these systems provide more 

accurate flight data to the ALS and can help to make landing 

smoothers. Recently, some researches have applied some 

intelligent concepts such as neural networks, fuzzy systems, 

genetic  

algorithm, and hybrid systems to flight control increase the 

flight controller's adaptively to different environments 

[6,7,8,1,9]. 

    

In this paper, we proposed a heuristic method to select PID 

controllers for Charlie aircraft using Particle Swarm 

Optimization algorithm. The paper is organized as follows, 

section II provides PSO Algorithm, section III describes 

aircraft equation of motion while section IV details the 

Charlie aircraft model used in this work. Section V describes 

simulation and results. Finally section VI presents the 

conclusions of this work. 
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II. PSO ALGORITHM 

 

   The PSO has been successfully applied in function 

optimization problems. In this paper, we have attempted to 

obtain PID controllers by converting an ALS design problem 

to a parameter optimization problem.  

 

   The PSO is one of the evolutionary computation techniques 

introduced by Kennedy and Eberhart in 1995 [10]. The PSO 

algorithm is similar to evolutionary computation in producing 

a random population initially and generating the next 

population based on current cost, but it does not need 

reproduction or mutation to produce the next generation. 

Thus, PSO is faster in finding solutions compared to any other 

evolutionary computation technique. In PSO algorithm, each 

particle is moving, and hence has a velocity. Also, each 

particle remembers the position it was in and where it had its 

best result so far. Moreover, the particles in the swarm 

cooperate exchanging information about what they have 

discovered in the search region they have visited [11]. The 

basic PSO can be summarized as follows. 

 

A. Basic PSO Algorithm 

 

In  a PSO  system,  a  swarm  of  individuals  (called  particles  

or  intelligent  agents)  fly through the search space. Each 

particle represents a candidate solution to the optimization 

problem. The position of a particle is influenced by the best 

position visited by itself (i.e. its own experience) and the 

position of the best particle in its entire population. The best 

position obtained is referred to as the global best particle. 

The performance of each particle (i.e. how close the particle 

is from the global optimum) is measured using a fitness 

function that varies depending on the optimization problem. 

Each particle traverses the XY coordinate within a 

two-dimensional search space. Its velocity is expressed by vx 

and vy (the velocity along the X-axis and Y-axis, 

respectively).  Modification  of  the  particles  position  is  

realized  by  the  position  and velocity information [12]. 

Each agent knows its best value obtained so far in the search 

(pbest) and its XY position. This information is an analogy 

of the personal experiences of each agent. Individual 

particles also have knowledge about the best value achieved 

by the group (gbest) among pbest. Each agent uses 

information relating to: its current position (x,y), its current 

velocities (vx,vy), distance between its current  position  and  

its   pbest and  the  distance  between  its  current  position  and  

the groups gbest to modify its position. 

 

The velocity and position of each agent is modified according 

(1) and (2) respectively [13]: 
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With regards to equation 1 and 2,  and  denote the 

current and modified search point, respectively;  and  

respectively represent the current and modified velocity; 

 and  represents the velocity based upon pbest 

and gbest, respectively.  

 

To control swarm convergence involves a system of 

“constricted coefficients” applied to various terms of the 

conventional swarm velocity algorithm. This so called 

constriction factor approach controls the swarm convergence 

so that: 

 

-   The swarm does not diverge in a real value region. 

- The swarm converges and searches region more efficiently. 

The modified velocity update equation is given in (3) [14]: 

 

                                                                                           (3) 

With regards to (3): X represents the constriction factor and is 

defined in (4) 

                                                                      (4) 

 

B. Steps in implementing the PSO method 

 
Figure 2.1 illustrates the general flowchart for the PSO 

technique. The sequence can be described as follows:  

 

Step 1: Generation of initial conditions of each agent. 

 

Initial searching points (si
o
) and the velocities (vi

o
) of each 

agent are usually generated randomly within the allowable 

range. The current searching point is set to pbest for each 

agent. The best-evaluated value of pbest is set to gbest and the 

agent number with the best value is stored. 

 

Step 2: Evaluation of searching point of each agent. 

 

The objective function is calculated for each agent. If the 

value is better than the current pbest value of the agent, then 

pbest is replaced by the current value. If the best value of 

pbest is better than the current gbest, the gbest value is 

replaced by the best value and the agent number with the best 

value is stored. 

 

Step 3: Modification of each searching point. 

 

The current searching point of each agent is changed, using 

equations (2), (3) and (4) is used for the constriction factor 

method. 

 

Step 4: Checking to exit condition. 

 

The terminating criterion is checked to determine whether it 

has been achieved. If the terminating criterion is not met then 

the process is repeated from Step 1, otherwise the algorithm is 

stopped. 

 
                                                      

Figure 2.1: Steps in PSO  

 

 

C. Performance Index 

 

   The PSO algorithm has been developed that uses a 

numerical optimization method. In general, parameters to 

optimize are evaluated by performance index in the numerical 

optimization method. Therefore, the way of defining the 

performance index effect on the optimization results 

considerably. In general, the PID controller design method 

using the integrated absolute error (IAE), or the integral of 

squared error (ISE),or the integrated of time weighted 

squared error (ITSE), or the integral of time multiplied by 

absolute error (ITAE) is often employed in control system 

because it can be evaluated analytically in frequency domain 

[15,16,17,18]. 

   The four integral performance criteria have their own 

advantages and disadvantages. In this paper we are use 

  

ITAE   

 

Systems based on this index penalize the control error. 

System's designed using this criterion has small overshoots 

and well damped oscillations [19]. 

A summary of the performance indices and their properties is 

shown in table 2.1 
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Table 2.1: Summary of performance indices 

Performance 

Index 

Equation  Properties 

 

ISE 

 

ISE =  

Penalizes large 

control errors. 

Settling time 

longer than 

ITSE.  

Suitable for 

highly damped 

systems. 

ITSE ITSE  Penalizes long 

settling time and 

large control 

errors. 

Suitable for 

highly damped 

systems. 

IAE IAE  Penalizes control 

errors. 

ITAE ITAE  Penalizes long 

settling time and 

control errors. 

 

III. AIRCRAFT EQUATION OF MOTION 

 

A. Aircraft Equations of Longitudinal Motion 

   In order to obtain the transfer function of the aircraft, it is 

first necessary to obtain the equations of motion for the 

aircraft. The equations of motion are derived by applying 

Newton’s Laws of motion which relate to the summation of 

the external forces and moments to the linear and angular 

accelerations of the system or body. Certain assumptions must 

be made to do this application. By the way, the application is 

done according to [20].  
Furthermore in longitudinal dynamics in order to get the 

linearized and Laplace transformed equations of motion, 

stability derivatives have to be also calculated. Then the 

related force term and moment term are handled, the 

longitudinal equations of motion for the aircraft are written as; 

u  = Xuu + Xww – g   

  = Zuu + Zww + Uoq – g  + E  

   = Muu + Mww + M   + Mqq + E  

    q                                                                                 (5) 
 

B. Transfer functions obtained from Short Period 

Approximation 

   The short period approximation consists of assuming that 

any variations, u, which arise in airspeed as a result of control 

surface deflection, atmospheric turbulence, or just aircraft 

motion, are so small that any terms in the equations of motion 

involving u are negligible. In other words, the approximation 

assumes that short period transients are of sufficiently short 

duration that Uo remain essentially constant, i.e. u = 0. Thus, 

the equations of longitudinal motion may now be written as: 

 
  = Zww + Uoq +  E 

   = Mww + M    + Mqq +  E = (Mw+ M Zw)w +(Mqq + 

Uo Mw)q +(  +  M ) E                                        (6)                                               
 

If the state vector for short period motion is now defined as: 

X                                                                                (7)                                                                                                                                                                                        

And the control vector, u, is taken as the elevator deflection, 

E, then eqs (6) may be written as a state equation:  

X
 
 = Ax + Bu 

Where: 

  

A =  

 

B =   

 

[sI- A] =  

 

sp(s) = det[sI- A] = s
2 
 – [Zw+ Mq +M  Uo]s +[ZwMq - UoMW]   

                                                                                            (8)                                                                                                            

 

It is easy to show that: 

 

 =   

 

Where: 

 

kw =   

 

T1 =  

Also: 

 =  

 

Where: 

 

=  

 

=                                              (9) 

 

C. Flight Path Angle 

There is a useful kinematic relationship which can be found 

by means of the short period approximation: to change the 

flight path angle, 𝛾, of an aircraft it is customary to command 

a change in the pitch attitude, , of the aircraft. Since 

   

𝛾 =  – α                                                                           (10) 

 = 1-  .                                                          (11) 

 =                                                                       (12) 

 

IV. AIRCRAFT CONTROL SYSTEM 

 

In figure 4.1 a block diagram of typical aircraft system is 

shown [21] 

The angle Ɣ0 represents the required glide path angle 

according to assigned landing path. 
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The error signal is Ɛ is the difference between Ɣ0 and Ɣ. 

  is the command signal to the aircraft elevator. 

 

 
 

   Figure 4.1 Block diagram of aircraft control system. 

 

 

  A. CHARLIE Aircraft Mathematical Model: 

CHARLIE Aircraft: is a very large, four – engine passenger 

jet aircraft [21]. 

 

Table 4.1 Longitudinal Motion Stability derivative 

 
From eq. (9) 

Kq=  0.181776 

T2= 2.07085 

sp(s) = S
2
 + 0.909 S + 0.484 

 =    

 =   

 =   

Actuator =   

 The open loop transfer function CHARLIE aircraft is 

founded as:  

 

   

V. SIMULATION AND RESULTS 

   Controller gains, dynamic performances and performance 

index are summarized in table 5.1 and table 5.2. In table 5.1 

controller gains in first row are designed by the classical 

approach (Z-N method). Controller gains in the last row are 

obtained by PSO method. The controller performance of the 

system is shown in figure 5.1. From figure 5.1 and table 5.2 

ALS for Charlie Aircraft with PSO method shows better 

performance than classical PID. 

 

 Table 5.1 Controller gains  

 

Table 5.2 Controller gains, Dynamic Performance 

Specifications and Performance Index 

 

 
Figure 5.1 distinguishes the step response of the Ziegler – 

Nichols designed PID controller versus a Particle Swarm 

Optimization tuned PID controller using ITAE. 

 

VI.  CONCLUSION 

   This paper presents design of ALS for Charlie aircraft using 

PID controller parameters based on Particle Swarm 

Optimization method. From analysis of design results, we 

conclude that the proposed method is more efficient in ALS 

design problem. It is clear from results that the proposed PSO 

method is better than classical Z-N method and obtains higher 

quality solution with better computation efficiency.    
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