Investigation of Stresses in Ring Stiffened Circular Cylinder

Neetesh N. Thakre, Dr. D. V. Bhope

Abstract— This study deals with the stress analysis of cylinder using Finite Element Method. The analysis is carried out in ANSYS. The FE results are compared with theoretical results. The proposed work is aimed to analyze the cylinder with the stiffeners under static load conditions. From the analysis it is found that, there is a good agreement between analytical and FE results. From the analysis of cylinder with stiffener it is concluded that the minimum hoop and radial stresses are developed for cylinder with inner triangular stiffener. When the number of stiffeners increases then the buckling pressure capacity also increases and deformation decreases. So, the stiffener are recommended not to reduce the stress levels but to increase buckling load capacity of cylindrical vessesls.

Index Terms— Stress Analysis , Stiffener, Buckling , Cylinder.

I. INTRODUCTION

The cylindrical shells structures play an important role for underwater applications, space vehicles and aircrafts in terms of its buckling, stiffness, strength and weight etc. Hence the importance of lightweight and high strength materials such as aluminum alloys, titanium alloys and composite materials have become significant. In the present work the problem of cylinder with stiffener of varying dimensions at different locations under static load conditions is analyzed using analytical as well as FE approach. The proposed analysis involves the study of cylinder with different cross-section of stiffener ring with same cross-sectional area of stiffener for each of the cases. The cross-sectional view of the cylinder with stiffener ring for three cases is shown in fig 2.1, 2.2 & 2.3 for rectangular, triangular & trapezoidal stiffener respectively.

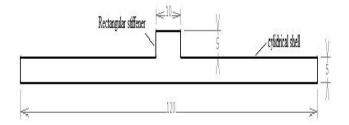


Fig 1.1 Cylinder with Rectangular Stiffener

Manuscript received September 11, 2014.

Neetesh N. Thakre , P. G. Student, Department of Mechanical Engineering R.C.E.R.T., Chandrapur.

Dr. D. V. Bhope, Professor and Head Department of Mechanical Engineering, R.C.E.R.T., Chandrapur.



Fig.1.2 Cylinder with Triangular Stiffener

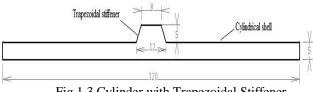


Fig.1.3 Cylinder with Trapezoidal Stiffener

A. Investigation of Stresses in Cylinder:

Following data is assumed for analysis: Internal pressure = $P_i = 10 \text{ Mpa}$ Yield strength = $\sigma_t = 250 \text{ Mpa}$ Inner diameter= $d_1 = 100 \text{ mm}$

Thickness (t) of simple cylinder is given by equation (1),

thickness =
$$t = r_i \left[\sqrt{\frac{\sigma_t + p_t}{\sigma_t - p_t}} - 1 \right]$$
 (1)

Hoop stress is given by equation (2),

$$\sigma_{\theta} = \frac{p_t(r_2^2 + r_1^2)}{(r_2^2 - r_1^2)}$$
(2)

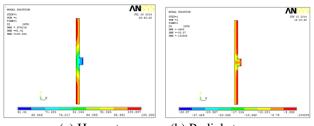
Radial stress at the inner surface is given by equation

 $\sigma_r = \frac{p(r_l)2}{(r_o)2 - (r_l)2} \left[1 - \frac{(r_o)2}{x^2} \right]$ (3)

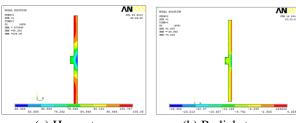
To verify the analytical result for hoop stress and radial stress of cylinder FE model is prepared with same geometric dimensions.

The comparison of analytical and FE results of cylinder is shown in table 2.1.

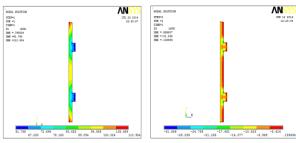
Table 2.1	Comparison	of Analytical	and FE results:

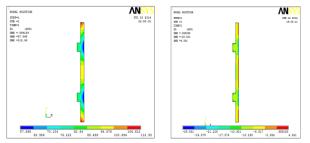

Results	Analytical	FEA	Error (%)
Hoop stress (Mpa)	105.24	105.171	0.065
Radial stress (Mpa)	-10	-9.933	0.67

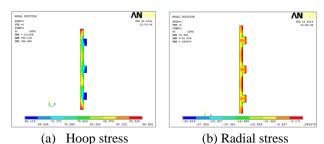
II. EFFECT OF STIFFENING RING ON STRESSES AND **DEFORMATION IN CYLINDER:**

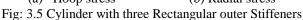

Circumferential stiffeners have been considered for cylinder. FE analysis is carried out by using ANSYS considering different types and location of stiffener. The specifications of the cylinder for FE analysis considered are as follows

> Inner diameter $(d_i) = 100 \text{ mm}$ Thickness (t) = 5 mmInternal pressure $(p_i) = 10$ MPa Modulus of elasticity (E) = $200 \times 10^3 \text{ N/mm}^2$ Poisson's ratio (μ) = 0.3

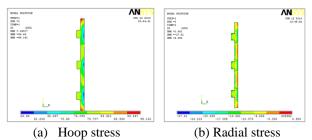
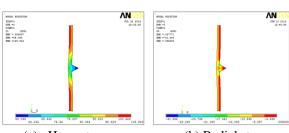
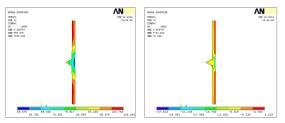

The stress contours for various stiffeners on cylinder has shown in fig.3.1 to 3.6 for inner & outer rectangular stiffener, fig.3.7 to 3.12, for inner & outer triangular stiffener & fig.3.13 to 3.18 for inner & outer trapezoidal stiffener.

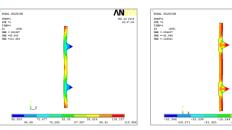

(b) Radial stress (a) Hoop stress Fig: 3.1 Cylinders with one Rectangular outer Stiffener

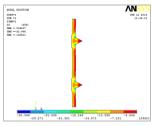

(b) Radial stress (a) Hoop stress Fig: 3.2 Cylinder with one Rectangular inner Stiffener



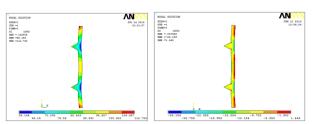
(a) Hoop stress (b) Radial stress Fig: 3.4 Cylinder with two Rectangular Inner Stiffeners


Fig: 3.6 Cylinder with three Rectangular inner Stiffeners



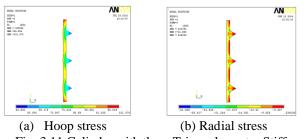
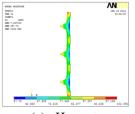
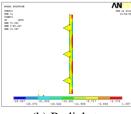
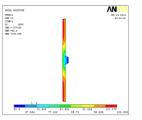
(a) Hoop stress (b) Radial stress Fig: 3.7 Cylinder with one Triangular outer Stiffener

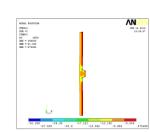


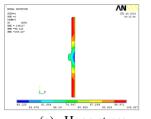
(a) Hoop stress (b) Radial stress Fig: 3.8 Cylinder with one Triangular inner Stiffener

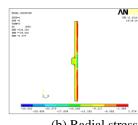
(b) Radial stress (a) Hoop stress Fig: 3.9 Cylinder with two Triangular outer Stiffeners

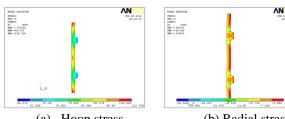
(a) Hoop stress (b) Radial stress Fig: 3.10 Cylinder with two Triangular inner Stiffeners

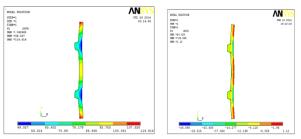

Fig: 3.11 Cylinder with three Triangular outer Stiffeners

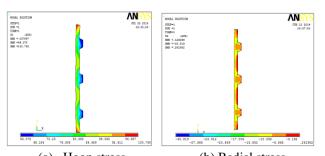



(a) Hoop stress (b) Radial stress Fig: 3.12 Cylinder with three Triangular inner Stiffeners



(a) Hoop stress (b) Radial stress Fig: 3.13 Cylinder with one Trapezoidal outer Stiffener




(b) Radial stress (a) Hoop stress Fig: 3.14 Cylinder with one Trapezoidal inner Stiffener

(b) Radial stress (a) Hoop stress Fig: 3.15 Cylinder with two Trapezoidal outer Stiffeners

(a) Hoop stress (b) Radial stress Fig: 3.16 Cylinder with two Trapezoidal inner Stiffeners

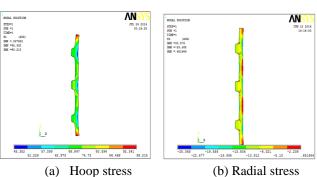
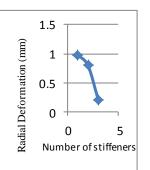



Fig: 3.18 Cylinder with three Trapezoidal inner Stiffeners

The variation of number of stiffening ring on Deformation is shown in fig 3.19 to 3.24 for cylinder with rectangular, triangular & trapezoidal stiffeners.

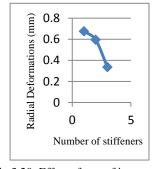
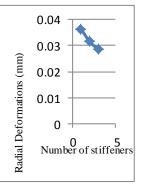



Fig 3.19: Effect of no. of outer Fig 3.20: Effect of no. of inner rectangular stiffeners on deformation in cylinder

rectangular stiffeners on deformation in cylinder

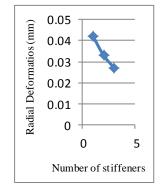
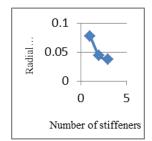



Fig 3.21: Effect of no. of outer triangular stiffeners on on deformation in cylinder

Fig 3.22: Effect of no. of inner triangular stiffeners deformation in cylinder

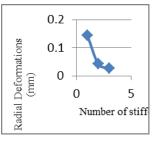


Fig 5.23: Effect of no. of outer trapezoidal stiffeners deformation in cylinder.

Fig 3.24: Effect of no. of inner on trapezoidal stiffeners on deformation in cylinder

III. DETERMINATION OF BUCKLING LOAD CAPACITY OF CYLINDER:

Based on the classical theory, a simple expression for the buckling load under external pressure for two dimensional isotropic shells in plain strain is given by equation (4).

$$Pcr = \frac{1}{4} \times \frac{E}{1-\mu^2} \times \frac{h^3}{a^3}$$

$$\tag{4}$$

Where,

A = radius of shellh = ThicknessE = Modulus of elasticity μ = Poisson ratio

The specification for above analysis are specified as follows-

 $E = Modulus of elasticity = 210 \times 10^3 Mpa$

- μ = Poisson's ratio = 0.3
- h = Thickness of the cylinder = 5 mm
- a = Radius of cylinder
- $P_{cr} = Critical pressure.$

$$Pcr = \frac{1}{4} \times \frac{210 \times 10^3}{1 - (0.3)^2} \times \frac{5^3}{50^3} = 57.69 \text{ MPa}$$

The solid model of cylinder, the meshing of FE model, the pressure loading on cylinder & the result of buckling load capacity are shown in fig. 4.1, 4.2, 4.3, & 4.4 respectively.

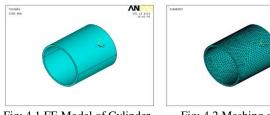


Fig: 4.1 FE Model of Cylinder

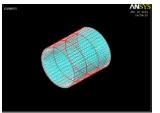


Fig: 4.3 External Pressures on Cylinder

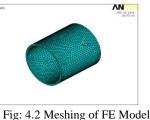


Fig: 4.4 Display Result

Effect of Stiffening Ring on Buckling Load Capacity of **Cylinder:**

The specification of the cylinder for buckling load capacity FE analysis is considered as follows-

> Inner diameter $(d_i) = 100 \text{ mm}$ Thickness (t) =5 mm External pressure $(p_o) = 10$ MPa Modulus of elasticity (E) = $200 \times 10^3 \text{ N/mm}^2$ Poisson's ratio $(\mu) = 0.3$

The specification of rectangular stiffener for FE analysis is considered as follows

Breadth of stiffener = 10 mmThickness of stiffener = 5 mm

The effect of stiffening ring on buckling load capacity of cylinder is shown in fig.5.1 to 5.5

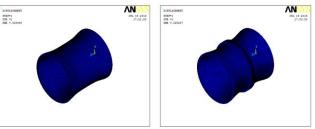


Fig: 5.2 Buckling of cylinder Fig: 5.1 Buckling of cylinder With one stiffener

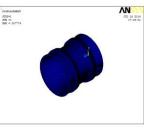


Fig: 5.3 Buckling of cylinder with two stiffeners

Fig: 5.4 Buckling of cylinder with three stiffeners

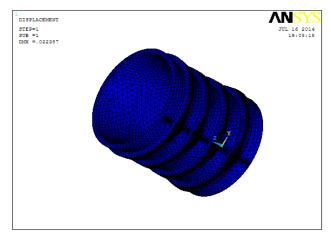


Fig: 5.5 Buckling of cylinder with four stiffeners

The variation of number of stiffening ring on buckling load capacity in cylinder is shown in fig.5.6

International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-9, September 2014

is shown in table 6.1

Results

Analytical

FEA

Difference

IV. RESULTS, DISCUSSION & CONCLUSION:

Table 6.1 Comparison of Analytical and FE result of cylinder

Hoop Stress

(MPa)

105.24

105.171

0.065%

Radial Stress

(MPa)

-10

-9.933

0.67%

The comparison of analytical and FE result of cylinder

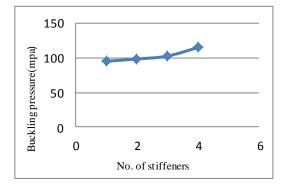


Fig 5.6 No. of Stiffeners Vs Buckling Load Capacity

The Comparison of Stresses in Cylinder with Inner and Outer Stiffeners is given in table 6.2.

Table 6.2 Compar	risons of Stresse	es in Cylinder	with Inner and	Outer Stiffeners
ruore 0.2 compa		in Cymaei	with inner and	outer builteners

	Outer stiffener			Inner stiffener		
Parameters	Hoop stress (MPa)	Radial stress (MPa)	Deformatio n (mm)	Hoop stress (MPa)	Radial stress (MPa)	Deformatio n (mm)
Cylinder with rectangular stiffener	81.578	-17.104	0.9791	80.437	-13.184	0.6738
Cylinder with two rectangular stiffeners.	83.37	-17.63	0.7985	82.931	-13.921	0.5941
Cylinder with three rectangular stiffeners.	79.417	-16.996	0.2110	77.403	-13.581	0.3351
Cylinder with triangular stiffener.	79.855	-17.641	0.0364	79.617	-14.783	0.0419
Cylinder with two triangular stiffeners.	82.041	-18.246	0.0315	82.251	-15.554	0.0329
Cylinder with three triangular stiffeners.	77.844	-17.693	0.0284	76.665	-15.261	0.0270
Cylinder with trapezoidal stiffener.	82.502	-17.121	0.0775	81.091	-14.245	0.1441
Cylinder with two trapezoidal stiffeners.	83.998	-18.011	0.0437	83.397	-14.277	0.0429
Cylinder with three trapezoidal stiffeners.	80.83	-17.005	0.0378	78.767	-13.804	0.0279

Comparison of buckling pressure is shown in Table 6.3. Table 6.3 Comparison of Buckling Pressure

Table 0.5 Comparison of Bucking Tressure				
Type of Analysis	Buckling Pressure (MPa)	Error (%)		
Analytical	57.69			
FE (Eigen value buckling analysis)	75.266	23.35		

The Comparison of Buckling Load as Per Number of Stiffener is given in table 6.4.

Table 6.4 Comparison of Buckling Load as Per Number of Stiffeners

of Benfener5				
Parameters	Buckling Pressure (MPa)	Deformation (mm)		
Simple cylinder	75.266	0.02848		
Cylinder with 1 rectangular stiffener	95.102	0.02523		
Cylinder with 2 rectangular stiffeners	98.366	0.02501		
Cylinder with 3 rectangular stiffeners	102.53	0.02482		
Cylinder with 4 rectangular stiffeners	114.95	0.02238		

From the analysis it is observed that the inner and outer stiffeners provided on cylinder does not appreciably reduce the stress levels but the deformations are reduced considerably.

It is also seen that the effect of reduction in stress value is more for inner stiffener as compared to outer stiffener but the difference is very marginal. The buckling analysis revealed that, the buckling load capacity of cylinder increases with increase in number of stiffeners. So, the stiffeners are recommended to reduce the deformation and to increase the buckling pressure capacity.

REFERENCES:

- [1]George Papadakis, "Buckling of thick cylindrical shells under external pressure a new analytical expression for the critical load and comparison with elasticity solutions", International Journal of Solids and Structures, 2008, pp:5308–5321.
- [2]Chi-mo Park and Dong-min Park, "Ultimate Strength Analysis of Ring-stiffened Cylinders with Initial Imperfections", The International Society of Offshore and Polar Engineers, 2003, pp:435-440.
- [3]Sreelatha P.R, Alice Mathai, "Linear and nonlinear buckling Analysis of stiffened cylindrical submarine hull", International Journal of Engineering Science and Technology, Vol. 4, No.06, 2012, pp:3003-3009.
- [4]Pulletikurti V Manikanta ,P. Ranga Raju, Y. Appa Rao, "Computer Aided Design and Analysis of Ring Stiffened Cylindrical Shell for Underwater Applications", Engineering Science and Technology, An International Journal, Vol.2, No. 4, 2012, pp:632-640.
- [5]C.T.F Ross, "FE program for axisymmetric problem in engineering, Ring stiffened circular cylinder", Ellis Horward limited, 1st edition, 1984.
- [6]R. S. Khurmi and J. K. Gupta, "Machine design", 14th edition, S. Chand publishing house (Pvt.) Ltd. 2005.
- [7]Galletly G.D., Slankard R.C. and Wenk E. "General instability of Ring stiffened cylindrical shells subjected to external hydrostatic pressure", A comparison of theory and experiment J. appl. Mech. Vol.25, No.2, 1955, pp:259-266