
                                                                                

International Journal of Engineering and Technical Research (IJETR) 

 ISSN: 2321-0869, Volume-2, Issue-5, May 2014   

                                                                                          189                                                                     www.erpublication.org 

 

 

Abstract— The Airy stress function for a long dip-slip fault 

of arbitrary dip and finite width buried in a homogeneous, 

isotropic, perfectly elastic half-space with rigid boundary is 

obtained. This Airy stress function is used to derive 

closed-form analytical expressions for the stresses and 

displacements at an arbitrary point of the half-space with rigid 

boundary caused by a long vertical dip-slip fault of finite width 

located at an arbitrary distance from the interface of uniform 

half-space. The variation of the displacement and stress fields 

with distance from the fault and with depth of the fault for 

different values of distances of fault from the interface are 

discussed numerically. 

 

Index Terms— Half- space, Rigid-boundary, Static- 

deformation, Dip- slip fault. 

I. INTRODUCTION 

In the field of seismology, Steketee (1958a, b) 

applied the elasticity theory of dislocations. Steketee dealt 

with a semi-infinite, non-gravitating, isotropic and 

homogenous medium.  Okada (1985) presented analytical 

expressions for the surface displacements, strains and tilts 

due to inclined shear and tensile faults in a half-space for 

both point and finite rectangular sources. Okada (1992) 

extended the results to internal deformation.  Maruyama 

(1966) calculated all sets of Green’s function for obtaining 

displacements and stresses around faults in a half-space. 

Jungles and Frazier (1973) described a finite element 

variational method applied to plane strain analysis which 

presented a suitable tool for analysis of permanent 

displacements and strains caused by seismic waves. 

Singh and Garg (1986) obtained the integral 

expressions for the Airy stress function in an unbounded 

medium due to various two-dimensional seismic sources. 

Singh and Rani (1991) obtained closed-form analytical 

expressions for displacements and stresses at any point of a 

two phase medium consisting of a homogenous, isotropic, 

perfectly elastic half-space in welded contact with a 

homogeneous, orthotropic, perfectly elastic half-space 

caused by two-dimensional seismic sources located in the 
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isotropic half-space. Singh et. al (1992), following the 

procedure of Singh and Garg (1986), obtained closed-form 

analytical expressions for the displacements and stresses at 

any point of either of two homogenous, isotropic, perfectly 

elastic half-spaces in welded contact due to two-dimensional 

sources. 

Kumari et al. (1992), obtained the elastic residual 

field for two half-spaces in welded contact caused by a point 

dislocation sources. Rani et al. (2006), obtained closed form 

expressions for displacements and stresses of two half-spaces 

in welded contact due to a long blind dip slip fault. Again, 

Rani et al. (2009), obtained closed form analytical 

expressions for displacements and stresses at any point of a 

two phase medium consisting of a homogenous, isotropic, 

perfectly elastic half-space in welded contact with a 

homogeneous, orthotropic, perfectly elastic half-space due to 

a long dip-slip fault of finite width located  in the isotropic 

half-space. 

   The simplest model to consider the effect of a 

material discontinuity is that of a dip-slip dislocation in an 

elastic half-space (medium 1 with rigidity μ1) in contact with 

another elastic half-space (medium 2 with rigidity μ2). If m = 

(μ1/ μ2), then the two particular cases of special interest are 

for m=0 and m→∞ . In case m=0, we have a dip slip 

dislocation in an elastic half -space with free boundary. On 

the other hand, when m→∞, we have the case of dip-slip 

dislocation in an elastic half-space with a rigid boundary, 

considered in the present study. This implies that our model 

consists of a dip slip dislocation in an elastic half-space in 

contact with a rigid half-space. This model is useful when the 

medium on the other side of the material discontinuity is very 

hard. Singh et al. (2011) obtained analytical expressions for 

stresses at an arbitrary point of homogenous, isotropic 

perfectly elastic half-space with rigid boundary caused by a 

long tensile fault of finite width. 

  The aim of the present paper is to study the 

two-dimensional deformation of a uniform half-space with 

rigid boundary caused by a long dip-slip fault of finite width. 

Beginning with the closed-form expression for the Airy 

stress function  for a vertical dip slip line source and dipping 

fault at  located in a uniform half-space with rigid 

boundary, given by Malik et al. (2012,13), we obtained Airy 

stress function for a long inclined dip-slip line source. 

Analytic integration over the width of the fault yields the 

Airy stress function for a dip-slip fault of arbitrary dip and 

finite width. The expressions for the stresses and 

displacements at any point of the half-space caused by a long 

dip-slip fault follow immediately. 
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II. THEORY 

Let the Cartesian co-ordinates be denoted by 

1 2 3( , , )x x x with 3x -axis vertically upward. Consider a 

homogeneous, perfectly elastic half-space with rigid 

boundary. The     half-space is assumed to be isotropic with 

stress-strain relation. 

 

Where,  and   are the components of stress 

tensor,  are the components of strain  

tensor,  is the shear modulus and  is Poisson’s ratio.  

  Consider a two dimensional approximation in 

which displacement component 1 2 3, ,u u u  are independent 

of 1x  so that   Under this assumption, the plane 

strain problem 1( 0)u   as well as anti-strain problem 

2( 0u   and 3 0)u   are decoupled and therefore, can be 

solved separately. The plane strain problem for an isotropic 

medium can be solved in terms of Airy stress function U  

such that  

2U /  

2U / ,                                        (2)    

      2U /                                 and     

2 2 0U                                                 (3)        

  Using the expressions of Airy stress function for 

vertical dip-slip line source and dip-slip on 45o
 dipping 

line source given by Malik et al. (2012, 2013), we have Airy 

stress function due to a dip-slip line source parallel to 

1x -axis and passing through the point 2 3(y , y )  located in 

isotropic half-space with rigid boundary as given below: 

 

 

 
             b   displacement discontinuity, 

      ds   width of line source, 

          dip-angle, 

  2 3( , )x x   receiver location, 

           2 2 2
1 2 2 3 3( ) ( )R x y x y    ,   

           2 2 2
2 2 2 3 3( ) ( )R x y x y    .                            

Using polar co-ordinates ( , )s  , fig.1(a)  

     2 cosy s  ,      

               3 siny d s   ,    

where, s is distance from lower edge of fault measured in dip 

direction. 

  Now, integrating U over s  between the limits 

(0, )L , we will obtain the following expressions for the Airy 

stress function for a long dip-slip fault of width L  and 

infinite length passing through the point 2 3(y , y )  located 

in isotropic        half-space with rigid boundary  with lower 

edge of fault at distance ‘ d ’ from interface  as given below: 

 

where, 
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Figure 1(a).  Geometry of dip-slip fault of width L at a 

distance d  from boundary of uniform half-space. 
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III. STRESSES 

Using equations (2) and (5), we will obtain the following 

expressions for stresses of the uniform half-space with rigid 

boundary due to  a long dip-slip fault of width L  and infinite 

length passing through the point 2 3(y , y )  located in 

isotropic half-space with rigid boundary  with lower edge of 

fault at distance ‘ d ’ from interface as given below: 

 

 

 

IV.  DISPLACEMENTS 

The displacements, for the isotropic half-space, are 

given by the expressions (Singh and Rani (1991))   

 

 
           

                

Using equations (9), (5), (6) and (8),  we will obtain the 

following expressions for displacements of the uniform 

half-space with rigid boundary due to  a long dip-slip fault of 

width L  and infinite length with lower edge of fault at 

distance ‘ d ’ from interface  as given below: 

 

 

V. NUMERICAL RESULTS AND DISCUSSION 

We will compute the stresses and displacements numerically 

due to a vertical long dip-slip fault of width L  at various 

points of a uniform half space with rigid boundary. 

We define the following quantities 
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2x
Y

L
 ; 

3x
Z

L
 ; 

d
D

L
                (12)                    

where, L  is the width of dip-slip fault. And also we take 


2

3
  and 90  o

 for simpler calculations. 

The displacements and stresses are calculated in units of 

2

b


 and 

b

L




respectively, where b  is the slip. 

Let the dimensionless stresses and displacements be denoted 

by iU  and ijP . Then,  

2
i iU u

b


      and     ij ij

L
P p

b




     (13) 

From equation (5) to (11), we will obtain the following 

expressions for dimensionless stresses and displacements for 

a vertical dip-slip fault of finite width. 

 

 
 

 
 

Figure 1.1 - 1.2 diplays the variation of 

dimensionless horizontal displacement U2 with 

dimensionless distance (Y) from the fault at dimensionless 

depth Z=2 and Z=3 respectively for distances D=0, 1, 2 of 

fault from interface. The displacement is symmetric about 

Y=0. In fig. 1.1, at Z =2 and D=0, U2 varies along a smooth 

curve but at D=1, 2 U2 varies strongly in the range -2 <Y < 2 

and tends to zero as Y approaches to infinity. In fig 1.2, at  Z 

=3 and D = 2. U2 attains minima at origin and varies in the 

range  - 2< Y <2 . At D=0,1 variation is smooth and U2 tends 

to zero as Y approaches to infinity. In this case, displacement 

field is affected when depth from the fault is changed at D=1.  

Fig. 1.3 shows the  variation of U2 with depth from the fault Z 

at Y=1 and D=0, 1, 2. In this case, displacement is not 

symmetric. At D=0, the curve is smooth, at D=1, U2 varies 

for              -3< Z < -1 otherwise smooth and at D=2, U2 varies 

strongly in the range -4 < Z < -2, but both have the same 

pattern. Moreover, U2 tends to zero as Z approaches to 

infinity. 

Fig. 1.4 – 1.5 shows the variation of dimensionless vertical 

displacement U3 with Y at Z=2 and Z=3 respectively. In fig. 

1.4 at D=0, U3 varies in range -1< Y <1 ; at D=1, 2 curve is 

discontinuous at origin. In fig. 1.5 at D=0,1, U3 varies in 

range -1< Y <1 ; at D=2, curve is discontinuous at origin. U3 

tends to zero as Y approaches to infinity in fig. 1.4-1.5 . Fig. 

1.6 shows the  variation of U3 with depth from the fault Z at 

Y=1 and D=0, 1, 2. All curves have the same pattern but 

varies differently. 

In fig 1.7 at Z = 2.5; D = 0, P22 exhibit very smooth curve , at 

D=1 varies in the range             -3< Y <3 and at D = 1/10, 

varies in in the range -2< Y <2. P22 tends to zero as Y 

approaches to infinity. In fig. 1.8 at Y = 4;  D =1/10, 1, 2 

pattern is same but varies strongly in different range. Fig. 

1.10 at Y = 1.5, P33  follows the pattern of fig. 1.8. In fig. 1.9 

at Z = 4; D = 3.5, P33 shows smooth curve;  at D = 2 curve 

varies in range -2< Y <2 . The curve at D = 1/10 is more 

smoother than at D = 2. In fig 1.11 at Z = 4.5; at D = 1.5, 

1/10, P23 varies smoothly and at D = 3 varies in range -2< Y 

<2. In fig. 1.12 at Y=2; at D=1/10 P23 shows smooth curve, at 

D=3 varies for negative values of Z and for D=1.5 varies in 

the range -3< Z <-1, otherwise smooth. Moreover , all 

stresses and displacements tends to zero as distances or 

depths approaches to infinity.   
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Figure 1.1 - Variation of horizontal displacement (U2) with 

distance from the fault. 
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Figure 1.2 - Variation of horizontal displacement (U2) with 

distance from the fault.  
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Figure 1.3 -  Variation of horizontal displacement (U2) with 

distance from the fault.  
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Figure 1.4 - Variation of vertical displacement (U3) with 

distance from the fault.  
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Figure 1.5 - Variation of vertical displacement (U3) with 

distance from the fault . 
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Figure 1.6 - Variation of vertical displacement (U3) with 

distance from the fault.  
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Figure 1.7 - Variation of  Dimensionless normal stress (P22) 

with distance from the fault . 
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Figure 1.8 - Variation of  Dimensionless normal stress (P22) 

with depth from the fault. 
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Figure 1.9 - Variation of  Dimensionless normal stress (P33) 

with distance from the fault. 
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Figure 1.10 - Variation of  Dimensionless normal stress (P33) 

with depth from the fault. 
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Figure 1.11 - Variation of  Dimensionless normal stress (P23) 

with distance from the fault. 
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Figure 1.12 -  Variation of  Dimensionless normal stress (P23) 

with distance from the fault. 

VI. CONCLUSION 

   Analytical expressions for elastic residual field caused by a 

long dip-slip fault of finite width L located in a uniform 

half-space with rigid boundary have been obtained. If we take 

the particular case of Rani et al. (2009) such as when 

orthotropic half-space is removed, i.e., if we take,  = 0, 

then m  and we will get a uniform half-space with rigid 

boundary. Our results have been verified with displacement 

and stress fields obtained by Rani et al (2009), for a particular 

case. Numerical results presented the variation of horizontal 

displacement, vertical displacement, normal and shear 

stresses with distance and depth fom the fault for different 

distances of fault from the interface. This model is useful 

when the medium on the other side of the material 

discontinuity is very hard. High-rigidity layers are generally 

present at depth below a volcanic edifice, covered by much 

softer volcanic-sedimentary layers composed of a mixture of 

ash, mud and lava (Bonafede & Revalta, 1999). Results 

obtained may find applications in geophysical phenomenon 

for above mentioned areas. 
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