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 

Abstract— In this paper we will show solution of ten problems 

in number theory. 

Problem 1 : Balanced Primes are infinite. 

Problem 2 : Euclid primes are infinite. 

Problem 3 : Quasiperfect number doesn’t exist. 

Problem 4 : Prime triplets are infinite. 

Problem 5 : Odd Superperfect number doesn’t exist. 

PROBLEM 6 : PROOF OF POLIGNAC'S CONJECTURE. 

PROBLEM 7 : THERE ARE INFINITELY MANY PRIME OF THE FORM 

N²+1. 

PROBLEM 8 : LONELY RUNNER CONJECTURE PROOF WHEN 

VELOCITIES ARE IN ARITHMETIC PROGRESSION. 

PROBLEM 9 : WE WILL FIND THE VALUE OF IMAGINARY PART OF 

NON-TRIVIAL ZEROS OF RIEMANN ZETA FUNCTION. 

PROBLEM 10 : WE WILL PROVE LANDER, PARKIN AND SELFRIDGE 

CONJECTURE. 

 
Index Terms— Balanced Primes, Euclid primes, Prime 

triplets, Polignac's conjecture.  

 

I. Problem 1 : 

A balanced prime is a prime number that is equal to the 

arithmetic mean of the nearest primes above and below. Or to 

put it algebraically, given a prime number , where n is its 

index in the ordered set of prime numbers, 

 

The first few balanced primes are 

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 

947, 977, 1103 (sequence A006562 in OEIS). 

For example, 53 is the sixteenth prime. The fifteenth and 

seventeenth primes, 47 and 59, add up to 106, half of which is 

53, thus 53 is a balanced prime. 
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When 1 was considered a prime number, 2 would have 

correspondingly been considered the first balanced prime 

since 

 

It is conjectured that there are infinitely many balanced 

primes. 

Problem source : 

http://en.wikipedia.org/wiki/Balanced_prime 

 

Solution 

 

Let there are finite number of balanced primes. 

We are considering primes of the form p-12, p-6, p. 

Now let’s pn -6 be the last balanced prime. 

Now we form odd numbers as below : 

Red coloured numbers are divisible by 3. Blue coloured 

numbers are divisible by 5 and Green coloured numbers are 

divisible by 7. 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

We see that pn +96 and pn +102 are composite and forming a 

balanced prime sets viz. pn +94, pn +100 and pn +106. 

Now according to our assumption one of this must be 

divisible by any prime before it i.e. one of them have to be 

composite. 

Now, we will find infinite number of balanced prime sets only 

by 5 and 7 and it will occur in a regular frequency i.e. after 

every 70 numbers and in a particular column it will occur after 

every 210 numbers. 

There are only finite number of primes before pn.  
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 They cannot make every balanced prime set 

unbalanced by dividing any of three primes forming 

the balanced prime set. 

So, there needs to be born primes after pn so that every regular 

occurrence of balanced prime set by 5,7 can be made 

unbalanced by dividing with those primes at least one of the 

prime forming balanced set. 

But there is no regular occurrence of prime whereas 5,7 will 

be forming balanced set of primes in a regular manner. 

 There will be a shortcoming somewhere of primes to 

make each and every balanced pair formed by 5,7 in 

a regular manner. 

 There will be balanced prime after pn. 

Here is the contradiction. 

 Balanced primes are infinite. 

Proved.  

II. Problem 2 : 

In mathematics, Euclid numbers are integers of the form En = 

pn# + 1, where pn# is the nth primorial, i.e. the product of the 

first n primes. They are named after the ancient Greek 

mathematician Euclid. 

The first few Euclid numbers are 3, 7, 31, 211, 2311, 30031, 

510511 (sequence A006862 in OEIS). 

It is not known whether or not there are an infinite number of 

prime Euclid numbers. 

E6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid 

number, demonstrating that not all Euclid numbers are prime. 

A Euclid number cannot be a square. This is because Euclid 

numbers are always congruent to 3 mod 4. 

For all n ≥ 3 the last digit of En is 1, since En − 1 is divisible by 

2 and 5. 

Problem source : http://en.wikipedia.org/wiki/Euclid_number 

Solution   

Let Euclid prime is finite. 

Let the last Euclid prime is En = pn# + 1 = p1 p2....... pn + 1 

Now, En = pn# + 1 = p1 p2....... pn  + 1 ≡ 1 (mod 3) and ≡ -1 (mod 

4) 

 Ek = 12p + 7 form. 

 Ek ≡ 3 (mod 8)  (considering p as odd) 

Now there will be cases when p1 p2....... pk  ≡ ±2 (mod 8) 

There will be cases when p1 p2....... pk  ≡ -2 (mod 8) 

 p1 p2....... pn  + 1 ≡ 7 (mod 8) which is contradiction. 

 p can be even. 

Putting 2p in place of p we get, Ek = 24p + 7 (p is odd) 

Now 24p + 7 ≡ -1 (mod 16) 

Now, p1 p2....... pk  ≡ ±2, ±6 (mod 16) 

 p1 p2....... pk  + 1 ≡ -1, 3, -5, 7 (mod 16) 

 There will be cases when p1 p2....... pk  + 1 is not ≡ -1 

(mod 16)  which is contradiction. 

 p is even. 

In this way the problem will go increasing giving same 

solution. 

 There will be primes after En. 

 Euclid primes are infinite. 

Proved. 

III. Problem 3 : 

In mathematics, a quasiperfect number is a theoretical 

natural number n for which the sum of all its divisors (the 

divisor function σ(n)) is equal to2n + 1. Quasiperfect numbers 

are abundant numbers. 

No quasiperfect numbers have been found so far, but if a 

quasiperfect number exists, it must be an odd square number 

greater than 10
35

 and have at least seven distinct prime 

factors. 

Problem source : 

http://en.wikipedia.org/wiki/Quasiperfect_number 

 

Solution  

 

No odd number can be Quasiperfect number as there are even 

number of odd factors in odd number. (except square number) 

Now, all even number has at least one odd factor excluding 

one except the numbers of the form 2^n. 

Now, let’s say an even number has 2 odd factors : p₁  and p₂  

 There are 3 odd factors viz. p₁, p₂, p₁p₂  
 Including 1 the sum of the odd factors become even. 

 Even number who has even number of odd factors 

cannot be Quasiperfect number. 

Now, let’s say an even number has 3 odd factors viz. p₁ , p₂ , 

p₃  

 There are 7 odd factors viz. p₁, p₂, p₃ p₁p₂, p₂p₃, p₃p₁, 
p₁p₂p₃ 

 Including 1 the sum of the odd factors become even. 

 Even number who has odd number of odd factors 

cannot be Quasiperfect number. 

Now, even number of the form 2^n has the factor sum 

1+2+2²+...2^n = 2^(n+1) – 1. Obviously this doesn’t satisfy 

the condition of being a Quasiperfect number. 

 No even number can be Quasiperfect number. 

Now, let’s say N is odd perfect square number. 

N = {(a^n)(b^m)...(k^y)}² = (a^2n)(b^2m)....(k^2y) 

Now,  1+a+a²+...+a^2n ≡ n(1+a) + 1 (mod 4)   as a² ≡ 1 (mod 

4) 

As a is odd (1+a) is even. 

 n(1+a) is not divisible by 4 otherwise it will give 

remainder as 1. 
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 n is odd and (1+a) = 2i where i is odd. 

Putting 2n+1 in place of n and 2a+1 in place of a the LHS of 

the equation becomes : 

{1+ (2a+1) + (2a+1)² + .... 

+(2a+1)^(4n+2)}.....{1+(2k+1)+(2k+1)²+....+(2k+1)^(4y+2)

} 

Now, LHS ≡ {(1+2a+1)((2n+1) +1}......{(1+2k+1)(2y+1) + 

1} (mod 8) 

 LHS ≡ {2(1+a)(2n+1)+1}......{2(1+k)(2y+1)+1} 

(mod 8) 

 LHS ≡ 5*5*....*5 (mod 8) as (1+a), ..., (1+k) are even. 

 LHS ≡ 5 or 1 (mod 8) (if there are odd number of 

terms then 5, if even then 1) 

But, RHS ≡ 2*1 +1 = 3 (mod 8) (as any odd square number ≡ 

1 (mod 8)) 

Here is the contradiction. 

 Quasiperfect number doesn’t exist. 

Proved. 

IV. Problem 4 : 

In mathematics, a prime triplet is a set of three prime 

numbers of the form (p, p + 2, p + 6) or (p, p + 4, p + 6). With 

the exceptions of (2, 3, 5) and (3, 5, 7), this is the closest 

possible grouping of three prime numbers, since every third 

odd number greater than 3 is divisible by 3, and hence not 

prime. 

The first prime triplets (sequence A098420 in OEIS) are 

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), 

(37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 

103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), 

(193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 

283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 

461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), 

(821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 

863), (877, 881, 883), (881, 883, 887) 

A prime triplet contains a pair of twin primes (p and p + 2, or 

p + 4 and p + 6), a pair of cousin primes (p and p + 4, or p + 2 

and p + 6), and a pair of sexy primes (p and p + 6). 

A prime can be a member of up to three prime triplets - for 

example, 103 is a member of (97, 101, 103), (101, 103, 107) 

and (103, 107, 109). When this happens, the five involved 

primes form a prime quintuplet. 

A prime quadruplet (p, p + 2, p + 6, p + 8) contains two 

overlapping prime triplets, (p, p + 2, p + 6) and (p + 2, p + 6, 

p + 8). 

Similarly to the twin prime conjecture, it is conjectured that 

there are infinitely many prime triplets. The first known 

gigantic prime triplet was found in 2008 by Norman Luhn and 

François Morain. The primes are (p, p + 2, p + 6) with 

p = 2072644824759 × 2
33333

 − 1. As of May 2013 the largest 

known prime triplet contains primes with 16737 digits and 

was found by Peter Kaiser. The primes are (p, p + 4, p + 6) 

with p = 6521953289619 × 2
55555

 − 5. 

Problem source : http://en.wikipedia.org/wiki/Prime_triplet 

 

Solution  

 

Red coloured numbers are divisible by 3. We will mark other 

composite numbers by blue.  

Let’s say pn -6, pn -2 and pn form the last triplet prime set. We 

assume there is finite number of prime triplet set.  

After pn one of every triplet set should get divided by prime 

before it. 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

As we can see the primes occur in a regular manner if we mark 

the composite number as above. But primes don’t have any 

regular pattern to generate. 

Here is the contradiction. So this case cannot happen. 

Again we form the table as below : 

 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

As we can see the primes occur in a regular manner if we mark 

the composite number as above. But primes don’t have any 

regular pattern to generate. 

Here is the contradiction. So this case cannot happen. 

 The composite number should occur in an awkward 

pattern 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://oeis.org/A098420
http://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Twin_prime
http://en.wikipedia.org/wiki/Cousin_prime
http://en.wikipedia.org/wiki/Sexy_prime
http://en.wikipedia.org/wiki/Prime_quintuplet
http://en.wikipedia.org/wiki/Prime_quadruplet
http://en.wikipedia.org/wiki/Twin_prime_conjecture
http://en.wikipedia.org/wiki/Gigantic_prime
http://en.wikipedia.org/wiki/Prime_triplet
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 More primes are necessary to make them composite as 

for each prime occurrence of the multiples of the 

primes are regular but primes don’t occur in regular 

pattern. 

Again we form the table as below : 

 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

Not to form any prime triplet after pn => there must be a 

composite number in each row. 

Now, before  pn the number of primes is less than pn . 

Now, after pn next multiple of pn will occur in the same 

column is 6pn .  

Between pn and 6pn there are pn number of rows. 

But before pn there are less than pn number of primes which 

can make composite one number of each row. 

 There will be primes left in a row. 

 Triplet prime set is there after pn . 

 Triplet prime set is infinite. 

Proved. 

Corollary : Twin primes are infinite as in the case of twin 

prime also each row should have at least one composite 

number. 

V. Problem 5 : 

In mathematics, a superperfect number is a positive integer n 

that satisfies 

 

where σ is the divisor function. Superperfect numbers are a 

generalization of perfect numbers. The term was coined by 

Suryanarayana (1969).
[1]

 

The first few superperfect numbers are 

2, 4, 16, 64, 4096, 65536, 262144 (sequence 

A019279 in OEIS). 

If n is an even superperfect number then n must be a power of 

2, 2
k
, such that 2

k+1
-1 is a Mersenne prime.  

It is not known whether there are any odd superperfect 

numbers. An odd superperfect number n would have to be a 

square number such that either n or σ(n) is divisible by at least 

three distinct primes. There are no odd superperfect numbers 

below 7x10
24

. 

Problem source : 

http://en.wikipedia.org/wiki/Superperfect_number 

Solution 5 :  

Let N = (a^n)(b^m)...(k^y)} 

Now the equations to satisfy the condition of existing a 

Superperfect numbers are : 

(1+a+a²+....a^n)(1+b+b²+...+b^m).....(1+k+k²+...+k^y) = 

(p1^a1)(p2^a2)....(pj^aj) where j is suffix. (A) 

and 

(1+p1+p1²+...+p1^a1)(1+p2+p2²+...+p2^a2)......(1+pj+pj²+...+p

j^aj) = 2{(a^n)(b^m)...(k^y)}  (B) 

Now if we divide equation (B) by 4 RHS ≡ 2 (mod 4) 

 LHS have only one odd power and rest are even 

otherwise LHS will be divided by 4. 

Let’s say a₁  is odd and rest powers are even. 

Now dividing both sides of equation (A) RHS ≡ p₁  (mod 4)  

 RHS ≡ ± 1 (mod 4) 

Now LHS of equation (A) should not be even. 

 All terms of LHS are odd. 

 n,m,...,k are even 

 N is a square number. 

Let N = {(a^n)(b^m)...(k^y)}² = (a^2n)(b^2m)....(k^2y) 

Now the equations to satisfy the condition of existing a 

Superperfect numbers are : 

(1+a+a²+....a^2n)(1+b+b²+...+b^2m).....(1+k+k²+...+k^2y) = 

(p₁ ^a₁ )(p₂ ^a₂ )....(pj^aj) where j is suffix. (1) 

and 

(1+p₁ +p₁ ²+...+p₁ ^a₁ )(1+p₂ +p₂ ²+...+p₂ ^a₂ )......(1+pj+

pj²+...+pj^aj) = 2{(a^n)(b^m)...(k^y)}²   (2) 

Now, RHS of equation (2) ≡ 2 (mod 4) (as any odd square 

number is ≡ 1 (mod 4)) 

 LHS should have only one odd power and rest are 

even power otherwise LHS will be divisible by 4. 

Let’s say a₁  is odd and rest are even. 

Now RHS of equation (2) ≡ {(1+p1)(a1+1)/2}{(1+p2)*(a2/2) + 

1}......{(1+pj)*(aj/2) + 1} 

 1+p₁ = 2i (where i is odd). 

 p₁ = 2(2i+1) – 1 = 4i+1 (putting 2i+1 in place of i).  

 p₁ ≡ 1 (mod 4) 

Now, let’s say n, m, ..., k are odd and (1+a), (1+b), .... (1+k) 

are divisible by 2 and not 4. 

if we take them even then the problem will go on increasing 

giving similar results. So generalization is not violated by 

taking the above assumption. 

Now, 1+a+...+a^2n ≡ n(1+a) + 1 (mod 4) 

 1+a+....+a^2n ≡ 3 (mod 4)  

 1+b+....+b^2m ≡ 3 (mod 4) ....... 1+k+....+k^2y ≡ 3 

(mod 4) 

 LHS of equation (1) ≡ 3*3*...*3 ≡ 1 or 3 (mod 4) 

RHS of equation (1) ≡ p₁  (mod 4)  ( as others are odd number 

square because a₁  other are even) 

http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Divisor_function
http://en.wikipedia.org/wiki/Perfect_number
http://en.wikipedia.org/wiki/Superperfect_number#cite_note-Guy99-1
http://en.wikipedia.org/wiki/2_%28number%29
http://en.wikipedia.org/wiki/4_%28number%29
http://en.wikipedia.org/wiki/16_%28number%29
http://en.wikipedia.org/wiki/64_%28number%29
http://en.wikipedia.org/wiki/65536_%28number%29
http://oeis.org/A019279
http://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Mersenne_prime
http://en.wikipedia.org/wiki/Superperfect_number
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 RHS of equation (1) ≡ 1 (mod 4)  (as p₁ ≡ 1 (mod 4) 

shown above) 

 LHS has even number of terms otherwise LHS would 

be ≡ 3 (mod 4) 

Now, n(1+a) +1 ≡ 3 (mod 4) 

 n(1+a) = 4w+2 form. 

Here we will take w as odd. (if we take w as even then the 

problem will go on increasing giving the same solution. So 

generalization is not violated by taking w as odd) 

 n(1+a) +1 ≡ 7 (mod 8) 

 m(1+b) +1 ≡ 7 (mod 8) ...... y(1+k) ≡ 7 (mod 8) 

 LHS of equation (1) ≡ 7*7*....even terms ≡ 1 (mod 8) 

But RHS of equation (1) ≡ p₁  (mod 8) (as other terms are odd 

square number ≡ 1 (mod 8)) 

 RHS of equation (1) ≡ 5 (mod 8) as p₁ = 4i+1 and i is 

odd. 

Here is the contradiction. 

 Odd superperfect number doesn’t exist. 

VI. PROBLEM 6 : 

POLIGNAC'S CONJECTURE 

In number theory, Polignac's conjecture was made by 

Alphonse de Polignac in 1849 and states: 

For any positive even number n, there are infinitely 

many prime gaps of size n. In other words: There are 

infinitely many cases of two consecutive prime 

numbers with difference n.
[1]

 

The conjecture has not yet been proven or disproven for a 

given value of n. In 2013 an important breakthrough was 

made by Zhang Yitang who proved that there are infinitely 

many prime gaps of size n for some value of n < 70,000,000.
[2]

 

For n = 2, it is the twin prime conjecture. For n = 4, it says 

there are infinitely many cousin primes (p, p + 4). For n = 6, it 

says there are infinitely many primes (p, p + 6) with no prime 

between p and p + 6. 

Problem source : 

http://en.wikipedia.org/wiki/Polignac%27s_conjecture  

Solution  

For twin prime see the corollary of Triplet Prime problem. 

(End of Solution 4) 

Now, we will prove there are infinitely many cousin primes. 

Let, the series of cousin primes is finite. 

Let, pn – 6 and pn -2 form the last cousin prime pair. 

Red coloured numbers are divisible by 3. We will mark other 

composite numbers by blue.  

Now we form the table as below : 

 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

The condition to satisfy that there is no cousin prime pair after 

pn  -2 is one of the two columns should be composite (except 

the column divisible by 3). 

 The primes occur in a regular fashion. 

 Here is the contradiction. 

Now, to deny the case there needs to be composite number in 

the middle column in an irregular fashion. 

Now, next pn -2 occurs in the middle column after pn -2 rows. 

 There are more than pn -2 composite numbers before 

next pn – 2 occurs in the table.  

 But before pn -2 there are less than pn -2 number of 

primes. 

 This case cannot happen. 

 There are infinite number of Cousin primes. 

Proved. 

The conclusion can be done in other way also : 

All the number of third column is composite. But there is at 

least difference of 2 between any consecutive prime. 

 There will be numbers left between the series of 

multiples of prime before pn -2.  

 There will be Cousin prime generated after pn -2. 

Here is the contradiction. 

 There are infinite number of Cousin primes. 

Proved. 

Now we will prove there are infinite number of sexy primes. 

Let, the series of sexy primes is finite. 

Let, pn – 8 and pn -2 form the last sexy prime pair. 

Red coloured numbers are divisible by 3. We will mark other 

composite numbers by blue.  

Now we form the table as below : 

 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Alphonse_de_Polignac
http://en.wikipedia.org/wiki/Parity_%28mathematics%29
http://en.wikipedia.org/wiki/Prime_gap
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Polignac%27s_conjecture#cite_note-1
http://en.wikipedia.org/wiki/Zhang_Yitang
http://en.wikipedia.org/wiki/Prime_gap
http://en.wikipedia.org/wiki/Polignac%27s_conjecture#cite_note-2
http://en.wikipedia.org/wiki/Twin_prime_conjecture
http://en.wikipedia.org/wiki/Cousin_prime
http://en.wikipedia.org/wiki/Sexy_prime
http://en.wikipedia.org/wiki/Polignac%27s_conjecture
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pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

The condition to satisfy that there is no sexy prime pair after 

pn  -2 is alternate number in each column should be composite 

(except the column divisible by 3). 

 The primes occur in a regular fashion. 

 Here is the contradiction. 

Now, to deny the case there needs to be more composite 

numbers. 

Now, next pn -2 occurs in the middle column after pn -2 rows. 

 There are more than pn -2 composite numbers before 

next pn – 2 occurs in the table.  

 But before pn -2 there are less than pn -2 number of 

primes. 

 This case cannot happen. 

 There are infinite number of Sexy primes. 

Proved. 

VII. Problem 7  

 

Are there infinitely many primes p such that p − 1 is a perfect 

square? In other words: Are there infinitely many primes of 

the form n
2
 + 1? Ii is known as one of the Landau's 

problems. 

Problem source : 

http://en.wikipedia.org/wiki/Landau%27s_problems 

Solution 7 : 

Now, n must be even. Because if n is odd then n²+1 = even = 

composite. 

Let the is the last prime of this form is 4k²+1. 

So, we replace n by 2n. 

The number is 4n² + 1 where n is odd. 

The equation is 4n² + 1 = (p₁^a₁)(p₂^a₂)...(pj^aj) where j is 

suffix. 

Now, 4n²+1 ≡ 1 (mod 4) 

Also, 4n²+1 ≡ 5 (mod 8) 

 RHS is of the form 4m+1 where m is odd. 

Now, 4n² + 1 ≡ 5 (mod 16) 

4m + 1 ≡ ± 4 (mod 16) 

 There will be cases when 4m+1≡ -4 (mod 16) 

 A contradiction occurs. 

Now, to avoid this contradiction m must be 4m+1 form. 

Putting 4m+1 in place of m we get, 16m+5. Where m is odd. 

 On dividing 16m+5 by 32 gives 21 as remainder. 

Now, 4n² + 1 ≡ 5 (mod 32) [ as n² ≡ 1, -7, 9, -15 (mod32)] 

Here is the contradiction. 

 All 4n²+1 cannot be composite. 

 There are infinite number of primes which are of the 

form n² +1. 

Proved. 

VIII. Problem 8 : 

Suppose there are k runners, all lined up at the start of a 

circular running track of length 1.  They all start running at 

constant, but different, speeds.   

 

The Lonely Runner conjecture states that for each runner, 

there will come a time when he or she will be a distance of at 

least 1/k along the track from every other runner. 

The conjecture has been proved for small values of k (<=7). 

The problem is to prove or disprove the conjecture for the 

general case, or for cases where k > 7. 

Solution  

Let’s say, there are i number of participant in the race. 

There velocities are V1 , V2, ...... Vi   where  V2 > V1 > .... > Vi 

The j-th person completes the cycle in tj time (where j is 

suffix) 

Let’s suppose the velocities are in Arithmetic progression 

with common difference –d. 

Now, let’s take any participant j whose velocity is Vj (j is 

suffix) 

Now Vj’s previous and next participants are V(j-1) and 

V(j+1) in the first cycle. 

Let’s say there cannot be a lonely runner. 

 {V(j+1) – V(j-1)}*t₁ < 2/i  (t₁ is the time when first 

person completes the cycle) 

Let’s say after time tk (k is suffix) first person (with velocity 

V₁ ) catches person j (with velocity Vj) 

Now, (V₁  - Vj)tk = n where n is number of cycle after which 

first person catches j-th person. (k is suffix) 

Upto this point the j-th person will be between (j+1)-th person 

and (j-1)-th person. 

This time the distance between them becomes {V(j+1) – 

V(j-1)}*tk  (where j+1, j-1, k are suffix) 

As we have assumed no lonely runner this must be less than 

2/i 

 {V(j+1) – V(j-1)}*tk  <  2/i 

Putting value of tk from above we get, [{V(j+1) – 

V(j-1)}*n]/(V1 - Vj) < 2/i 

Now, {V(j+1) – V(j-1)} = 2d  and (V1 - Vj) = (j-1)*d 

Putting these values in above equation, we get, 

2d*n/(j-1)*d  <  2/i 

 n/(j-1) < 1/i 

 ni < (j-1) 

Which is impossible. 

Here is the contradiction. 

Let’s say the first participant meet again the j-th participant 

after 2tk time. 

Now, the participant before and after the j-th participant be 

m-th and (m+1)-th. 

{V(m+1) – Vm}2tk < 2/i (m+1 and m are suffix). 

http://en.wikipedia.org/wiki/Landau%27s_problems
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Putting value of tk we get, {V(m+1) – Vm}*n/{V₁ - Vj} < 1/i 

 d*n/(j-1)*d < 1/i 

 n*i < (j-1) 

Which is impossible. 

Here is the contradiction. 

 Every person will become lonely at some point of 

time. 

 Lonely Runner Conjecture is true when velocities are 

in AP. 

Proved. 

IX. Problem 9 : 

The Riemann zeta-function ζ(s) is a function of a complex 

variable s defined by : 

 ζ(s) = 1 + 1/2
s
 + 1/3

s
 + 1/4

s
 + ... 

using analytical continuation for all complex s ≠ 1.  

The problem is to find the value of imaginary part of s for 

which ζ(s) = 0.  

Solution  

Te equation is : 1 + 1/2^s + 1/3^s + 1/4^s + ....... = 0 

 (1 + 1/3^s + 1/5^s +......) + (1/2^s + 1/4^s + 1/6^s 

+......) = 0 

 (1 + 1/3^s + 1/5^s +......) + (1/2^s)(1 + 1/2^s + 1/3^s + 

1/4^s +......) = 0 

 1 + 1/3^s + 1/5^s + .... = 0 ( as 1 + 1/2^s + 1/3^s + .... 

= 0 ) 

 1 + e^ln(1/3)^s + e^ln(1/5)^s + ...... = 0  (as a = e^lna 

where ln is natural logarithm to the base e ) 

 1 + e^{s*ln(1/3)} + e^{s*ln(1/5) + .... = 0 

 1 + e^[(p+iq){ln(1/3)}] + e^[(p+iq){ln(1/5)}] + ..... = 

0 ( s = p+iq where p, q real and i = √(-1) ) 

 1 + [e^{p*ln(1/3)}]*[e^{iq*ln(1/3)}] + 

[e^{p*ln(1/5)}]*[e^{iq*ln(1/5)}] + ..... = 0 

 1 + [e^{ln(1/3)^p}]*[Cos{q*ln(1/3)} + 

iSin(q*ln(1/3)}] + ...... = 0 

 1 + {(1/3)^p}[ Cos{q*ln(3)} - iSin(q*ln(3)] + 

{(1/5)^p}[ Cos{q*ln(5)} - iSin(q*ln(5)] + .... = 0 

 [1 + {(1/3)^p}Cos{q*ln(3)} + 

{(1/5)^p}Cos{q*ln(5)} + ....] – 

i[{(1/3)^p}Sin{q*ln(3)} + {(1/5)^p}Sin{q*ln(5)} + 

.........] = 0 

 1 + {(1/3)^p}Cos{q*ln(3)} + {(1/5)^p}Cos{q*ln(5)} 

+ ....... = 0   .......(1) and {(1/3)^p}Sin{q*ln(3)} + 

{(1/5)^p}Sin{q*ln(5)} + ......... = 0 (Equating real 

and imaginary part from both sides) ...... (2) 

[Another method of obtaining equation (1) and (2) 

Let (1/m)^i = r*e^(iθ) 

Taking natural logarithm to the base e on both sides we get, 

i*ln(1/m) = ln(r) + iθ 

Equating real and imaginary part from both sides we get, 

ln(1/m) = θ  &  ln(r) = 0 

 1/m = e^θ  &  r = 1 

 (1/m)^(p+iq) = e^(pθ+iqθ) 

 (1/m)^(p+iq) = {e^(pθ)}{e^(iqθ)} 

 (1/m)^(p+iq) = (1/m^p)[Cos{q*ln(m)} + 

iSin{q*ln(m)}  (putting value of θ and e^(iqθ) = 

Cosθ + iSinθ ) 

 (1/m)^(p+iq) = (1/m^p)Cos{q*ln(m)} + 

i(1/m^p)Sin{q*ln(m)} 

Putting m = 3, 5, 7, ..... and summing over all values, then 

equating the real and imaginary part from both sides, we get 

equation (1) and (2)] 

Now, multiplying both sides of equation (1) by 

Sin{q*ln(1/3)}  we get, 

Sin{q*ln(1/3)} + {(1/3)^p}Sin{q*ln(1/3)}Cos{q*ln(3)} + 

{(1/5)^p}Sin{q*ln(1/3)}Cos{q*ln(5)} + ..... = 0 

...................................... (3) 

Now multiplying both sides of equation (2) by Cos{q*ln(1/3)  

we get, 

{(1/3)^p}Cos{q*ln(1/3)}Sin{q*ln(3)} + 

{(1/5)^p}Cos{q*ln(1/3)}Sin{q*ln(5)} + .... = 0 ................ (4) 

Now adding equation (3) and (4) we get, 

Sin{q*ln(1/3)} + {(1/3)^p}[ Sin{q*ln(1/3)}Cos{q*ln(3)} + 

Cos{q*ln(1/3)}Sin{q*ln(3)}] + .... = 0 

Sin{q*ln(1/3)} + {(1/3)^p}Sin[q*{ln(1/3) + ln(3)}] + 

{(1/5)^p}Sin[q*{ln(1/3) + ln(5)}] + .... = 0 

Sin{q*ln(1/3)} + 0 + {(1/5)^p}Sin{q*ln(5/3)} + 

{(1/7)^p}Sin{q*ln(7/3)} + ..... = 0 ............. (5) 

Now adding equation (3) and (5)  we get, 

Sin{q*ln(1/3)} + {(1/3)^p}Sin{q*ln(3)} + {(1/5)^p}[ 

Sin{q*ln(5) + Sin{q*ln(5/3)] + ..... = 0 

 2Sin{(q/2)*ln(1/3)Cos{(q/2)ln(1/3) + 

2Sin{(q/2)ln(3)}Cos{(q/2)ln(3) + 

{(1/5)^p}*2Sin{(q/2)ln(25/3)}Cos{(q/2)ln(3) + .... 

= 0 (as SinA = 2Sin(A/2)Cos(A/2) and SinC + SinD 

= 2Sin{(C+D)/2}Cos{(C-D)/2} ) 

 2Cos{(q/2)*ln(3)}*[Sin{(q/2)ln(1/3) + Sin{(q/2)ln(3) 

+ Sin{(q/2)ln(25/3)} + Sin{(q/2)ln(49/3)} + 

............. = 0 ( as Cos{(q/2)ln(1/3) = Cos{(q/2)ln(3) 

because Cos(-A) = CosA ) 

 2Cos{(q/2)*ln(3) = 0 

 Cos{(q/2)*ln(3) = 0 

 (q/2)ln(3) = nπ ± (π/2) ( where n is integer ) 

 q = (2nπ ± π)/ln(3) = (2n ± 1)π/ln(3) 

Similarly by multiplying both sides of equation (1) by 

Sin{q*ln(1/5)}  and equation (2) by Cos{q*ln(1/3)}  then 

adding both the equation and following the steps as above we 

can prove, 

Cos{(q/2)ln(5) = 0 

 q = (2n ± 1)π/ln(5) 

Similarly it can be proved for any odd integer 2a+1, q = 

(2n±1)π/ln(2a+1)  where a = 1, 2, 3, ..... 

Problem 10 : 

In 1967, L. J. Lander, T. R. Parkin, and John Selfridge (LPS) 

conjectured
 
that if  

 
where ai ≠ bj are positive integers for all 1 ≤ i ≤ n and 

1 ≤ j ≤ m, then m+n ≥ k 

The problem is to prove the conjecture or find a 

counter-example 

http://en.wikipedia.org/wiki/John_Selfridge
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Problem source : 

http://en.wikipedia.org/wiki/Lander,_Parkin,_and_Selfridge

_conjecture  

Solution  

Let, m+n < k    

We will prove this with assumption m < n < 2m because 

similarly can be proved for md < n < m(d+1) where d = [n/m] 

(where [x]  = greatest integer contained in x) 

Let the ordered set of a1, a2,....an (n is suffix) = p1, p2, ...., pn 

(n is suffix) where p1 < p2< ....<pn 

Similarly, ordered set of b1, b2...,bm (m is suffix) = q1, q2, 

...qn where q1 < q2 < .... < qm 

Now applying AM ≥ GM on p1^k, p2^k, ...., pn^k we get, 

{(p1^k) + (p2^k) + .... + (pn^k)}/n ≥ (p1*p2*....*pn)^(k/n) 

 {(p₁^k) + (p₂^k) + .... + (pn^k)}^(n/k) ≥ {n^(n/k)}( 

p₁*p₂*....*pn) 

Similarly, {(q1^k) + (q2^k) + .... +(qm^k)}^(m/k) ≥ 

{m^(m/k)}(q1*q2*...*qm) 

Now multiplying both the equations, we get,  

{(q1^k) + (q2^k) + .... +(qm^k)}^{(m+n)/k} ≥ {n^(n/k)} 

{m^(m/k)}( ( p1*p2*....*pn) )(q1*q2*...*qm) (putting p1^k + 

p2^k + .... + pn^k = q1^k + q2^k + ...... +qm^k) 

 {n^(n/k)} {m^(m/k)}( ( p₁*p₂*....*pn) )(q₁*q₂*...*qm) 

≤ {(q₁^k) + (q₂^k) + .... +(qm^k)}^{(m+n)/k} < 

{(q₁^k) + (q₂^k) + .... +(qm^k)} (as m+n < k 

assumed)  

 {n^(n/k)}{m^(m/k)(pn*q₁/qm)(p(n-1)*q₂/qm).....(p(n

-(m-2))*q(m-1)/qm)(p(n-(m-1)))...(pn) < (q₁/qm)^k 

+ (q₂/qm)^k + ..... +(q(m-1)/qm)^k + 1 [ Dividing 

both sides by qm^k and grouping the terms in LHS] 

......................(A) 

Now, pn*q₁/qm > 1, p(n-1)*q₂/qm > 1, ......, 

p(n-(m-1))*q(m-1)/qm > 1 (this is trivial) 

Now, qm > qi (where i, m are suffix and i = 1, 2, ..., m-1) 

 1 > qi/qm 

 1 > (qi/qm)^(k-1) 

 qi/qm > (qi/qm)^k  [Multiplying both sides by qi/qm] 

 (pn*q₁)/qm > (q₁/qm)^k, (p(n-1)*q₂)/qm > (q₂/qm)^k, 

......, (p(n-(m-2))*q(m-1))/qm > (q(m-1)/qm)^k 

 Equation (A) cannot hold true. 

 Our assumption was worng. 

 m+n ≥ k 

 The conjecture is true. 
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