
                                                                                

International Journal of Engineering and Technical Research (IJETR) 

 ISSN: 2321-0869, Volume-1, Issue-9, November 2013   

                                                                                              19                                                                     www.erpublication.org 

 

 

Abstract— In this paper we will prove two problems :  
 

1) Rational Distance problem  

2)  4-D Euler Brick.  

3) ABC Conjeture 

4) Goldbach Conjecture 

First we will show no such point exist whose distances from 

every corner of a integer sided square are integers. 

Then we will prove non-existence of 4-D Euler Brick. 

Then we will prove ABC Conjecture is true. 

Then we will prove Goldbach Conjecture is true. 

 
Index Terms— Conjecture, 4-D Euler Brick, Pythagorean 

triple. 

 

I. RATIONAL DISTANCE PROBLEM   

Given a unit square, can you find any point in the same plane, 

either inside or outside the square, that is a rational distance 

from all four corners?  Or, put another way, given a square 

ABCD of any size, can you find a point P in the same plane 

such that the distances AB, PA, PB, PC, and PD are all 

integers? 

                           

The problem is to find such a point, or prove that no such 

point can exist. 

A. Solution : 
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Let ABCD be the square. The co-ordinates are shown in the 

image. P be any point on the same plane. a is an integer. 

PA² = x² + y² 

PB² = (x-a)² + y² = x² + y² +a² - 2ax = PA² + a² -2ax 

 2ax = PA² + a² - PB²  

PD² = x² + (y-a)² = x² + y² + a² - 2ay = PA² + a² - 2ay 

 2ay = PA² + a² - PD² 

PC² = (x-a)² + (y-a)² = x² + y² + 2a² - 2ax -2ay 

 PC² = PA² + 2a² - (PA² + a² - PB²) – (PA² + a² - PD²) 

 PC² + PA² = PB² + PD² 

Let’s say PA, PB, PC, PD all cannot be even. Otherwise the 

equation will get divided by 4 until one becomes odd. 

Let’s say PC, PA even and PB, PD odd 

PC, PA even => LHS divisible by 4. 

PB, PD odd => RHS ≡ 2 (mod 4) ( as square of any odd 

integer ≡ 1 (mod 4)) 

Contradiction. 

Let’s say PC and PB even and PA and PD odd. 

Now,  PC² + PA² = PB² + PD² 

 PC² - PB² = PD² - PA² 

Putting PC = 2m1, PB = 2m2 , PD = 2m3+1 and PA = 2m4 + 1 

4(m1² - m2²) = 4m3² + 4m3 + 1 – 4m4² - 4m4 - 1 

 m₁² - m₂² = (m₃ + m₄ + 1)(m₃ - m₄) 

Let’s say m3, m4 both odd. Putting (2m3+1) in place of m3 and 

(2m4+1) in place of m4 

The equation becomes, m1² - m2² = (2m3 + 1 +2m4 + 1 + 

1)(2m3 + 1 – 2m4 -1) 

 m₁² - m₂² = 2(2m₃+2m₄+3)(m₃ - m₄) 

In LHS both are square. So, multiple can be minimum 4 and 

not 2. 

So, this equation is impossible. 

Let’s say m3 even and m4 odd. Putting 2m3 in place of m3 and 

2m4+1 in place of m4 

The equation becomes, m1² - m2² = (2m3 + 2m4 +1 +1)(2m3 - 

2m4 -1) 

 m₁² - m₂² = 2(m₃+m₄+1)(2m₃-2m₄-1) 

Again LHS can have at least multiple of 4 so this equation is 

not possible. 

Let’s say m3, m4 both even. Putting 2m3 in place of m3 and 

2m4 in place of m4. 

The equation becomes, m1² - m2² = (2m3+2m4+1)(2m3-2m4) 

 m₁² - m₂² = 2(2m₃+2m₄+1)(m₃ - m₄) 

Again LHS can have at least multiple of 4 so this equation is 

not possible. 

Np other combination of m3 and m4 possible. 

 The equation has no solution. 
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 The point P doesn’t exist. 

B. Synopsis : 

Euler bricks are bricks with all edges and face diagonals 

integers, named after one of their first investigators, Leonhard 

Euler (1707-1783). Each pair of edges forms the legs of a 

Pythagorean triple, each face diagonal the hypotenuse of a 

Pythagorean triple. Example edges: 88, 234, 480. 

 

The term Euler brick has a number of aliases - uses the term 

Classical Rational Cuboid. uses the term Body Cuboid to refer 

to an Euler brick with an irrational body diagonal. French 

terms include brique de Pythagore and paralleloide de 

Pythagore. Currently it is not known if an Euler brick can have 

an integer body diagonal - this question also has a number of 

aliases - the Perfect Box Problem, Perfect Cuboid Problem, 

Rational Box Problem, Rational Cuboid Problem, Integer 

Cuboid Problem, etc. 

II. EULER BRICK 

An Euler brick is a cuboid that possesses integer edges 

 and face diagonals  

  

 

(1)  

  

 

(2)  

  

 

(3)  

If the space diagonal is also an integer, the Euler brick is 

called a perfect cuboid, although no examples of perfect 

cuboids are currently known.  

The smallest Euler brick has sides 

and face polyhedron diagonals 

, , and , and was discovered 

by Halcke (1719; Dickson 2005, pp. 497-500). Kraitchik 

gave 257 cuboids with the odd edge less than 1 million (Guy 

1994, p. 174). F. Helenius has compiled a list of the 5003 

smallest (measured by the longest edge) Euler bricks. The 

first few are (240, 117, 44), (275, 252, 240), (693, 480, 140), 

(720, 132, 85), (792, 231, 160) 

III. 4-D EULER BRICK PROBLEM 

An Euler Brick is just a cuboid, or a rectangular box, in which 

all of the edges (length, depth, and height) have integer 

dimensions; and in which the diagonals on all three sides are 

also integers. 

                       

So if the length, depth and height are a, b, and c respectively, 

then a, b, and c are integers, as are the quantities √(a
2
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) and 
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2
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2
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2
). 

The problem is to find a four dimensional Euler Brick, in 

which the four sides a, b, c, and d are integers, as are the six 

face diagonals √(a
2
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) and 
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), or prove that such a 

cuboid cannot exist . 

A. Solution  

Let a, b, c, d are the sides of the four dimensional Euler Brick. 

Now the equations are : 

a² + b² = e² ..........(1) 

b² + c² = f²............(2) 

c² + a² = g².............(3) 

b² + d² = h²............(4) 

c² + d² = i²..............(5) 

a² + d² = j²..............(6) 

Case 1 : 3 of a, b, c, d even and one odd. 

Let’s say a, b, c even and d is odd. 

From (1) if we divide the equation by 4 then, a and  e say 

becomes odd. 

 b² has a factor of 16 

Now if we divide equation (3) by 4 let’s say a and g become 

odd. 

 c²  has a factor of 16. 

Now if we divide the equation (2) by 16 then in left side b² and 

c² becomes odd f² should remain even. => f² has got a factor of 

64. 

Now b = 4(2p+1)    and  c = 4(2q+1) ( as they have got factor 

of 16 ) 

 b² = 16(4p² + 4p +1)      and   c² = 16(4q² + 4q + 1) 

 b² = 64p(p+1)  + 16     and  c² =  64q(q+1) + 16 

 b² + c² ≡ 16+16 =32 (mod 64) 

But f² ≡ 0 (mod 64) 

Equation (2) doesn’t hold. 

Contradiction. 

Now if, b² or c² have a factor of 64 then also the equation fails 

to exist. 

 b² or c² must have a factor of 64*4 = 256. 

Let’s say c² has a factor of 256. 

 b² has a factor of 64. 

From equation (5), c² + d² = i² 

 i² of the form 256m₁ + p₁ 

From equation (6), a² + d² = j² 

 j² is of the form 16m₂ + p₂ 

From equation (3), c² + a² = g² 

 g² is of the form 16(16m₃+p₃) 

Now subtracting equation (5) – (6) we get, 

c² - a² = i² - j² 

c²+ a² = g²  (from equation (3)) 

Now, solving for c² we get,    c² = (i² - j² + g²)/2 

Now putting the values of i² , j², g² we get, 

c² = (256m1 + p1 - 16m2 – p2 + 16(16m3 + p3))/2 

 Let’s consider the worst possible scenario. Let’s p1 – p2 = 

64m₄ 
c² = 16(16m1 + 4m₄ -m2 + 16m3 + p3)/2   

Let’s put 2m₂ + 1 in place of m₂ . p₃ = 1 or 9 



                                                                                

International Journal of Engineering and Technical Research (IJETR) 

 ISSN: 2321-0869, Volume-1, Issue-9, November 2013   

                                                                                              21                                                                     www.erpublication.org 

 

c² = 16(16m₁ + 4m₄ - 2m₂ -1 +16m₃ + 1) /2 

 c² = 32(8m₁ + 2m₄ - m₂ +8m₃)/2  which clearly cannot 

hold. 

So, no solution for 3 even 1 odd. 

Case 2 : At least 2 is odd. Let’s say a, b are odd and c, d are 

even. 

From equation (1) we get e² = even  

 e² has a factor of 4. 

Now a, b ≡±1 (mod 4) 

 a² , b² ≡ 1 (mod 4) 

 a² + b² ≡ 2 (mod 4) 

But e² ≡ 0 (mod 4) 

Here is the contradiction. 

B. Conclusion : 

From Case 1 and Case 2 we see that no other combination of 

a, b, c, d exists to give solution to the 6 simultaneous 

equations. 

C. Result : 

4D Euler Brick doesn’t exist. 

 

IV. ABC CONJECTURE PROBLEM 

Let A, B, and C be three coprime integers such that   

A + B = C  

Now multiply together all the distinct primes that divide any 

of these numbers, and call the result rad(ABC).  

For example, if we start with 4 + 11 = 15, we have 2 (which 

divides 4), 11 (which divides 11) and 3 and 5 (which divide 

15), so rad(ABC) = 2 x 11 x 3 x 5 = 330.  

C is almost always smaller than rad(ABC), but not always. If 

you start with 2 + 243 = 245, the primes are 2 (which divides 

2), 3 (which divides 243), and 5 and 7 (which divide 245). So 

rad(ABC) = 2 x 3 x 5 x 7 = 210. In this case, C is much bigger 

than rad(ABC).  

Let’s count C as ―much bigger‖ whenever it’s bigger than 

rad(ABC)
1.1

 or rad(ABC)
1.001

 or rad(ABC)
1.000000000001

 or 

rad(ABC)
1+Є

. The ABC conjecture says that no matter how 

small Є, there will still be only finitely many examples where 

C counts as much bigger than rad(ABC).  

The problem is to prove or disprove the conjecture. 

A. Solution : 

A + B = C 

Let {P} be the set of primes. 

Let’s say C takes prime values only. So C ϵ {P} 

Let us take any prime number say 13. 

2 + 11 = 13 

Here 2, 11, and 13 are co-prime and rad(A)rab(B)rad(c) = 

2*11*13 > C =13 

So, if we take C as prime then rad(C) = C 

 Rad(A)rad(B)rad(C) > C 

As prime number series is infinite. For every prime we will 

find a C. 

 Rad(A)rad(B)rad(C) > C is true for infinite values of 

C. 

Now we will consider the case when rad(A)rad(B)rad(c) < C 

Say, there are infinite C’s for which this equation hold. 

Let this set call Q where Q ={C when rad(A)rad(B)rad(c) < 

C} 

As {P} the set of primes is infinite so there must be one to one 

or one to many relation between {P} and {Q} for each 

element. 

Say for C = 11 all combinations of A and B, C< 

rad(A)rad(B)rad(C) 

For 11 we cannot find any value of C in {Q} for which that 

gets related to one or many elements of P by a relation.  

Now, the set {Q}’s all elements are not related to {P} 

 Q is not an infinite set. 

Now, Q can be empty. 

Now, 2 + 3^5 = 5*7² 

Here rad(A) = 2, rad(B) = 3 , rad(C) = 5*7 

Now, rad(A)rad(B)rad(C) = 2*3*5*7 = 210  and C = 245 

 Rad(A)rad(B)rad(C) < C 

 Q is non-empty. 

So, Q is a finite non-empty set. 

 There are few (finite number of C) C’s for which 

rad(A)rad(B)rad(C) < C 

 ABC conjecture is true. 

Peoved. 

 

V. GOLDBACH CONJECTURE PROBLEM 

The Goldbach Conjecture states that every even number 

greater than 2 is the sum of two primes.  A number is prime if 

it is divisible only by itself and 1.  So, for example, 36 = 

17+19. 

The problem is to prove the conjecture, or find a 

counter-example. 

A. Solution : 

p + p1 = 2k .......(1) 

where p, p1 are primes and k ϵ N (Natural number set) 

Now, the set of prime number is countable infinite. Let’s call 

it {P} 

N is also infinite. 

There is one to one or one to many relationship between 

Countable infinite sets. 

Implies, we will find at least one p and p1 for every natural 

number k in equation (1) 

Implies Goldbach Conjecture is true.  

Corollary : Every even integer greater than 2 is sum of two  

distinct  primes. The representation is at least one. 
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